Two solvents, n-hexane and ethyl acetate, were employed to extract oil from Asphodelus tenuifolius Cav. seeds using the Soxhlet extraction technique. The process was optimized using Central Composite Design (CCD) and Response Surface Methodology (RSM). ANOVA and a second-order polynomial equation were applied to evaluate the effects of key operational factors, including extraction time (20–60 min) and solvent-to-solid ratio (0.2–0.6 g/mL), on oil yield. The physicochemical properties, fatty acid composition, and functional groups of the extracted oil were analyzed. While both solvents influenced oil yield and quality, the fatty acid composition remained consistent, with unsaturated fatty acids, particularly linoleic acid, identified as the main components. Under optimized conditions, the highest oil yields were 22% with n-hexane and 19.91% with ethyl acetate. FTIR spectroscopy confirmed the presence of ester groups, suggesting potential applications in biodiesel production. These findings offer valuable insights for producing oils rich in unsaturated fatty acids for food, cosmetic and renewable energy industries. These findings pave the way for further advancements in industrial applications by promoting the sustainable use of plant-derived oils.

Optimization of Seed Oil Extraction from Asphodelus tenuifolius Cav. Using Response Surface Methodology

Agnese Santanatoglia;Filippo Maggi;Giovanni Caprioli
;
2025-01-01

Abstract

Two solvents, n-hexane and ethyl acetate, were employed to extract oil from Asphodelus tenuifolius Cav. seeds using the Soxhlet extraction technique. The process was optimized using Central Composite Design (CCD) and Response Surface Methodology (RSM). ANOVA and a second-order polynomial equation were applied to evaluate the effects of key operational factors, including extraction time (20–60 min) and solvent-to-solid ratio (0.2–0.6 g/mL), on oil yield. The physicochemical properties, fatty acid composition, and functional groups of the extracted oil were analyzed. While both solvents influenced oil yield and quality, the fatty acid composition remained consistent, with unsaturated fatty acids, particularly linoleic acid, identified as the main components. Under optimized conditions, the highest oil yields were 22% with n-hexane and 19.91% with ethyl acetate. FTIR spectroscopy confirmed the presence of ester groups, suggesting potential applications in biodiesel production. These findings offer valuable insights for producing oils rich in unsaturated fatty acids for food, cosmetic and renewable energy industries. These findings pave the way for further advancements in industrial applications by promoting the sustainable use of plant-derived oils.
2025
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/493764
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact