Phthalates are chemical compounds, mainly used as additives in plastics, which are known to induce harmful impacts to the environment and human health due to their ability to act as hormone-mimics. Few studies have been reported on the relationship between human exposure to phthalates and the level of circulating microRNAs (miRs), especially those miRs encapsulated in extracellular vesicles/exosomes or exosome-like vesicles (ELVs). We examined the relationship of ELV-miR expression patterns and urine of adult men with five phthalate metabolites (i.e., mono isobutyl phthalate, mono-n-butyl phthalate, mono benzyl phthalate, mono-(2-ethyl-5-oxohexyl) phthalate, mono-(2-ethylhexyl) phthalate) to identify potential biomarkers and relevant pathways. We found significant positive associations which were further confirmed by multivariable analysis. Overall, our analyses showed that the Σ phthalate metabolite concentration was associated with a significant increase in the expression level of two miRs found in ELV: miR-202 and miR-543. Different pathways including cancer and immune-related responses were predicted to be involved in this relationship. Analyzing the specific downstream target genes of miR-202 and miR-543, we identified the phosphatase and tensin homolog (PTEN) as the key gene in several converging pathways. In summary, the obtained results demonstrate that exposure to environmental phthalates could be related to altered expression profiles of specific ELV-miRs in adult men, thereby demonstrating the potential of miRs carried by exosomes to act as early effect biomarkers.

Extracellular Vesicles in Environmental Toxicological Studies: Association between Urinary Concentrations of Phthalate Metabolites and Exosomal miRNA Expression Profiles.

Giovanni Caprioli;Franks Kamgang Nzekoue;Manuella Lesly Kouamo Nguefang;Gianni Sagratini;
2024-01-01

Abstract

Phthalates are chemical compounds, mainly used as additives in plastics, which are known to induce harmful impacts to the environment and human health due to their ability to act as hormone-mimics. Few studies have been reported on the relationship between human exposure to phthalates and the level of circulating microRNAs (miRs), especially those miRs encapsulated in extracellular vesicles/exosomes or exosome-like vesicles (ELVs). We examined the relationship of ELV-miR expression patterns and urine of adult men with five phthalate metabolites (i.e., mono isobutyl phthalate, mono-n-butyl phthalate, mono benzyl phthalate, mono-(2-ethyl-5-oxohexyl) phthalate, mono-(2-ethylhexyl) phthalate) to identify potential biomarkers and relevant pathways. We found significant positive associations which were further confirmed by multivariable analysis. Overall, our analyses showed that the Σ phthalate metabolite concentration was associated with a significant increase in the expression level of two miRs found in ELV: miR-202 and miR-543. Different pathways including cancer and immune-related responses were predicted to be involved in this relationship. Analyzing the specific downstream target genes of miR-202 and miR-543, we identified the phosphatase and tensin homolog (PTEN) as the key gene in several converging pathways. In summary, the obtained results demonstrate that exposure to environmental phthalates could be related to altered expression profiles of specific ELV-miRs in adult men, thereby demonstrating the potential of miRs carried by exosomes to act as early effect biomarkers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/481144
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact