In the present work, different natural compounds from coffee by-product extracts (coffee silverskin and spent coffee) rich in polyphenols, was investigated against beauvericin (BEA) induced-cytotoxicity on SH-SY5Y cells. Spent coffee arise as waste products through the production of instant coffee and coffee brewing; while the silverskin is a tegument which is removed and eliminated with toasting coffee grains. First of all, polyphenol extraction methods, measurement of total polyphenols content and its identification were carried out. Afterwards evaluating in vitro effects with MTT assay on SH-SY5Y cells of coffee by-product extracts and mycotoxins at different concentrations and exposure times was performed. TPC in silverskin coffee by-product extracts was >10 times higher than in spent coffee by-product extracts. Chlorogenic acid was the majority polyphenol detected. Viability for BEA reached IC50 values at 72h (2.5 μM); boiling water silverskin coffee extract reached the highest viability also in pre-treatment BEA exposure and compared with MeOH and MeOH:H2O (v/v, 50:50) extracts. These results in SH-SY5Y cells highlight the use of such residues as supplements or bioactive compounds in the future.

Reducing the effect of beauvericin on neuroblastoma SH-SY5Y cell line by natural products

Gianni Sagratini;Giovanni Caprioli;
2020-01-01

Abstract

In the present work, different natural compounds from coffee by-product extracts (coffee silverskin and spent coffee) rich in polyphenols, was investigated against beauvericin (BEA) induced-cytotoxicity on SH-SY5Y cells. Spent coffee arise as waste products through the production of instant coffee and coffee brewing; while the silverskin is a tegument which is removed and eliminated with toasting coffee grains. First of all, polyphenol extraction methods, measurement of total polyphenols content and its identification were carried out. Afterwards evaluating in vitro effects with MTT assay on SH-SY5Y cells of coffee by-product extracts and mycotoxins at different concentrations and exposure times was performed. TPC in silverskin coffee by-product extracts was >10 times higher than in spent coffee by-product extracts. Chlorogenic acid was the majority polyphenol detected. Viability for BEA reached IC50 values at 72h (2.5 μM); boiling water silverskin coffee extract reached the highest viability also in pre-treatment BEA exposure and compared with MeOH and MeOH:H2O (v/v, 50:50) extracts. These results in SH-SY5Y cells highlight the use of such residues as supplements or bioactive compounds in the future.
2020
File in questo prodotto:
File Dimensione Formato  
Toxicon 188 (2020) pp. 164–171.pdf

solo gestori di archivio

Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.05 MB
Formato Adobe PDF
3.05 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/446417
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact