Apium nodiflorum (L.) Lag. (water celery) is an hydrophytic plant forming dense submerged populations occurring along streams and rivers of Europe. In the present work we provided new insights into the phytochemistry and biology of A. nodiflorum. In particular, we studied the chemical profile of essential oil and polar extracts obtained from the flowering aerial parts of water celery growing in central Italy, together with the essential oil biological activities, namely antimicrobial, antioxidant and cytotoxicity on tumour cells. In addition, we correlated the productivity in secondary metabolites to the secreting structures through a detailed micromorphological study. The essential oil was dominated by two main chemotypes, characterized by myristicin and limonene, respectively. The oils showed significant toxicity on tumour cells, as evidenced by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, with IC50 values in the range 3.8–15.9 μg mL−1, together with inhibitory effects on Candida albicans (inhibition zones of 10–11 mm). HPLC-MS analysis showed the caffeoylquinic acids and quercetin-3-O-glucoside as the most abundant phenolic compounds. Ducts and vittae were the principal secretory structures of vegetative (leaves and stems) and reproductive (fruits) parts, respectively, storing mainly essential oil. Results of this work provide scientific evidences for the possible valorization and exploitation of water celery.

Secondary metabolites, secretory structures and biological activity of water celery (Apium nodiflorum (L.) Lag.) growing in central Italy

F. Maggi;M. Ricciutelli;M. Bramucci;L. Quassinti;D. Petrelli;L. A. Vitali;K. Cianfaglione;
2019-01-01

Abstract

Apium nodiflorum (L.) Lag. (water celery) is an hydrophytic plant forming dense submerged populations occurring along streams and rivers of Europe. In the present work we provided new insights into the phytochemistry and biology of A. nodiflorum. In particular, we studied the chemical profile of essential oil and polar extracts obtained from the flowering aerial parts of water celery growing in central Italy, together with the essential oil biological activities, namely antimicrobial, antioxidant and cytotoxicity on tumour cells. In addition, we correlated the productivity in secondary metabolites to the secreting structures through a detailed micromorphological study. The essential oil was dominated by two main chemotypes, characterized by myristicin and limonene, respectively. The oils showed significant toxicity on tumour cells, as evidenced by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, with IC50 values in the range 3.8–15.9 μg mL−1, together with inhibitory effects on Candida albicans (inhibition zones of 10–11 mm). HPLC-MS analysis showed the caffeoylquinic acids and quercetin-3-O-glucoside as the most abundant phenolic compounds. Ducts and vittae were the principal secretory structures of vegetative (leaves and stems) and reproductive (fruits) parts, respectively, storing mainly essential oil. Results of this work provide scientific evidences for the possible valorization and exploitation of water celery.
2019
File in questo prodotto:
File Dimensione Formato  
Secondary metabolites, secretory structures and biological activity of water celery (Apium nodiflorum (L.) Lag.) growing in central Italy.pdf

solo gestori di archivio

Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/408049
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact