Quantum control techniques applied at macroscopic scales provide us with opportunities in fundamental physics and practical applications. Among them, measurement-based feedback allows efficient control of optomechanical systems and quantum-enhanced sensing. In this paper, we propose a near-resonant narrow-band force sensor with extremely low optically added noise in a membrane in the middle optomechanical system subject to a feedback-controlled in-loop light. The membrane's intrinsic motion consisting of zero-point motion and thermal motion is affected by the added noise of measurement due to the backaction noise and imprecision noise. We show that, in the optimal low-noise regime, the system is analogous to an optomechanical system containing a near quantum-limited optical parametric amplifier coupled to an engineered reservoir interacting with the cavity. Therefore, the feedback loop enhances the mechanical response of the system to the input while keeping the optically added noise of measurement below the standard quantum limit. Moreover, the system based on feedback offers a much larger amplification bandwidth than the same system with no feedback. Without the need to hybridize it with other quantum systems or introduce nonlinearities, our force sensor may have broad applications ranging from biology and medicine to gravitational wave detection and tests of fundamental physics.
Force Sensing in an Optomechanical System with Feedback-Controlled In-Loop Light
Vitali, D;
2022-01-01
Abstract
Quantum control techniques applied at macroscopic scales provide us with opportunities in fundamental physics and practical applications. Among them, measurement-based feedback allows efficient control of optomechanical systems and quantum-enhanced sensing. In this paper, we propose a near-resonant narrow-band force sensor with extremely low optically added noise in a membrane in the middle optomechanical system subject to a feedback-controlled in-loop light. The membrane's intrinsic motion consisting of zero-point motion and thermal motion is affected by the added noise of measurement due to the backaction noise and imprecision noise. We show that, in the optimal low-noise regime, the system is analogous to an optomechanical system containing a near quantum-limited optical parametric amplifier coupled to an engineered reservoir interacting with the cavity. Therefore, the feedback loop enhances the mechanical response of the system to the input while keeping the optically added noise of measurement below the standard quantum limit. Moreover, the system based on feedback offers a much larger amplification bandwidth than the same system with no feedback. Without the need to hybridize it with other quantum systems or introduce nonlinearities, our force sensor may have broad applications ranging from biology and medicine to gravitational wave detection and tests of fundamental physics.File | Dimensione | Formato | |
---|---|---|---|
published-PhysRevApplied.17.034020.pdf
solo gestori di archivio
Tipologia:
Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.89 MB
Formato
Adobe PDF
|
2.89 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2106.11199.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
PUBBLICO - Creative Commons
Dimensione
2.37 MB
Formato
Adobe PDF
|
2.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.