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Quantum control techniques applied at macroscopic scales provide us with opportunities in fundamental
physics and practical applications. Among them, measurement-based feedback allows efficient control of op-
tomechanical systems and quantum-enhanced sensing. In this paper, we propose a near-resonant narrow-band
force sensor with extremely low optically added noise in an optomechanical system subject to a feedback-
controlled in-loop light. The membrane’s intrinsic motion consisting of zero-point motion and thermal motion
is affected by the added noise of measurement due to the backaction noise and imprecision noise. We show
that, in the optimal low-noise regime, the system is analogous to an optomechanical system containing a near
quantum-limited optical parametric amplifier coupled to an engineered reservoir interacting with the cavity.
Therefore, the feedback loop enhances the mechanical response of the system to the input while keeping the op-
tically added noise of measurement below the standard quantum limit. Moreover, the system based on feedback
offers a much larger amplification bandwidth than the same system with no feedback.

I. INTRODUCTION

Quantum control is a developing research area that explores
techniques guiding the system dynamics towards desired tar-
gets by external, time-dependent manipulation. Advanced
quantum control schemes are important when exploiting co-
herent quantum effects in the emerging field of quantum tech-
nologies. Feedback is a control technique where the outputs
from the quantum system are used as inputs that control the
system dynamics and which enables us to evolve the system
towards some desired outcome. Feedback techniques show
promise for system stabilization and reducing decoherence
and noise [1, 2]. Various optical demonstrations of feed-
back techniques have been shown over the past few years.
Prominent among these are the coherent quantum feedback
and measurement-based feedback control [1, 2]. The latter
is a powerful platform for the state control of the mechanical
oscillator and enhanced quantum sensing [1, 2].

Combining ultralow-dissipation optical cavities with ad-
vanced nanofabrication techniques for mechanical resonators
has led to outstanding experimental progress in the past
decade [3]. These efforts have resulted in the coherent in-
teraction of light and mechanical motion of massive objects
at the quantum level and paved the way for a better under-
standing of light-matter interaction in the rapidly developing
area quantum optomechanics. Feedback techniques have also
been used in optomechanical systems. For instance, approach-
ing the quantum ground state of a kilogram-scale system in a
gravity-wave interferometer [4], quantum-enhanced feedback
cooling of a mechanical oscillator [5, 6], and force and posi-
tion sensing via measurement-based control of a mechanical
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oscillator [7, 8] have been investigated with a feedback loop
that operates directly on the mechanical element. More re-
cently, feedback-controlled in-loop light has been used to en-
hance the efficiency of optomechanical systems, e.g., enhanc-
ing sideband cooling [9], normal-mode splitting [10], improv-
ing the performance of an optomechanical heat engine [11],
and generating entanglement of two different mechanical res-
onators [12].

Any measurement of an observable that does not commute
with itself at different times has limits due to the Heisenberg
uncertainty theorem [13]. The standard quantum limit (SQL)
is determined by a trade-off between shot noise and radiation
pressure backaction noise in force sensors based on quantum
optomechanics. Various approaches have been proposed and
experimentally realized to surpass the SQL: backaction-noise
reduction to overcome the SQL [14–17], coherent quantum
noise cancellation based on quantum interference [18–23] and
exploitation of quantum correlations to deviate from the SQL
[24]. In force sensors based on the backaction-evasion tech-
nique, the SQL is surpassed by producing a large signal with-
out suppressing the added noise while in the quantum noise
cancellation technique, the backaction noise is completely
cancelled without amplifying the signal. It has been also
demonstrated that the parametric modulation of the spring co-
efficient of a mechanical oscillator in an optomechanical sys-
tem could be used to perform single-quadrature detection of a
force applied to the mechanical oscillator with simultaneously
suppressed optically added measurement noise and amplified
input signal [25].

In the red detuning regime, the optomechanical interaction
causes a net energy transfer from the mechanical mode into
the cavity mode, hence, in effect, cools the mechanical mo-
tion [26–31]. In contrast, in the blue detuning regime, the op-
tomechanical interaction results in an energy transfer into the
mechanical motion; consequently, it results in optomechanical
amplification [32–34]. In this situation the mechanical noise
is not cooled and induces a significant added noise. Ampli-
fication can also be realized in optomechanical systems sub-
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ject to mechanical parametric driving [25]. Both optical and
mechanical responses of a linear amplifier for optomechani-
cal systems to quantum and classical fluctuations have been
developed in Ref. [35].

Inspired by the above-mentioned studies on feedback con-
trol and optomechanical force sensors, in this paper, we pro-
pose a high–precision near-resonance narrow-band force sen-
sor that is feasible with state-of-the-art experimental setups
[9, 10]. We show a close analogy between an optomechanical
system with in-loop feedback and an optomechanical ampli-
fier with an engineered reservoir interacting with the cavity.
Consequently, the feedback loop enhances the mechanical re-
sponse of the system to the input force in the red detuning
of the resolved sideband regime. The force sensor introduced
here exhibits simultaneously quantum-limited signal amplifi-
cation (due to the feedback loop) and noise suppression (due
to the cooling by the red-sideband laser drive) in the resolved
sideband regime. Moreover, the weak input signal is trans-
duced with higher gain to the optical output while the signal-
to-noise ratio and sensitivity of the system remain unchanged.
The feedback loop also significantly enhances the detection
bandwidth.

The paper is organized as follows. In Sec. II, we describe
the system under consideration, i.e., a nanomechanical mem-
brane placed inside an optical cavity subject to a feedback-
controlled in-loop light, and then we present the quantum
Langevin equations. In Sec. III, we demonstrate how to am-
plify the input signal by enhancing the mechanical response of
the system by feedback-controlled in-loop light, at the same
time suppressing the added noise of measurement by red de-
tuned laser drive. Then, we study the sensitivity as well as the
signal-to-noise ratio of the proposed force sensor. Finally, in
Sec. IV, we present our concluding remarks.

II. THEORETICAL DESCRIPTION OF THE SYSTEM

Our scheme for the feedback-enhanced force sensor is de-
picted in Fig. 1. A nanomechanical membrane is placed into a
high–finesse double-sided Fabry–Perot cavity with frequency
ωc which is driven through the mirror M1. Compared with
a single-sided optomechanical cavity, this setup contains one
additional parameter to optimize, allowing more efficient de-
tection. In addition, the position of the membrane can be mea-
sured by monitoring the transmitted light using balanced ho-
modyne detection. The resulting photocurrent, ifb(t), is fed
back to the input at mirror M1 using an acousto-optic modu-
lator (AOM) driver that modulates the amplitude of the input.
The magnitude of an external force on the sensor is then es-
timated using standard linear response theory. We will show
how to amplify the force by applying the feedback loop in the
system.

We assume a single mechanical mode coupled to another
optical mode via radiation pressure [3]. We consider a
strongly driven optical cavity field and weak optomechanical
coupling. This allows us to linearize the quantum dynamics of
fluctuations around the semiclassical amplitudes [3, 36]. The
linearized optomechanical Hamiltonian describing the inter-
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FIG. 1. Schematic illustration of the proposed optomechanical force
sensor: A nanomechanical membrane is positioned inside a high–
finesse optical cavity with feedback-controlled in-loop light. The
cavity is driven through the mirror M1 and the amplitude of the trans-
mitted beam at mirror M2 is detected via homodyne detection which
consists of a beam splitter (BS), two photodiodes (D1, D2) and a local
oscillator with a phase θ relative to the signal. The resulting signal
ifb(t) is electronically processed, and fed back, through an acousto-
optic modulator (AOM) driver to the amplitude of the input field at
mirror M1, thus closing the feedback loop.

action is given by

H = h̄∆c†c+ h̄ωmb†b+ h̄Λ(c†+c)(b†+b)+xzpfF(t)(b†+b) .
(1)

The first term describes the free energy of the cavity mode in
a frame rotating at laser frequency where c (c†) is the annihi-
lation (creation) operator of the cavity mode and ∆ = ωc−ωL
is the detuning between the cavity resonance ωc and the pump
laser frequency ωL. The second term describes the mechanical
Hamiltonian where the operator b (b†) is the annihilation (cre-
ation) operator of the mechanical mode with natural frequency
ωm. The interaction between the center-of-mass motion of the
membrane and the cavity mode is given by the third term in
Eq. (1) where Λ is the interaction rate. Finally, the last term in
the Hamiltonian accounts for the coupling of the membrane to
an input classical force F(t) in the x-direction, as depicted in
Fig. 1. Moreover, xzpf =

√
h̄/2mωm is the zero-point posotion

uncertainty of the membrane with mass m.
Moving the operators to an interaction picture with respect

to the Hamiltonian H0 = h̄∆c†c+ h̄ωmb†b, we obtain the lin-
earized optomechanical Hamiltonian describing the interac-
tion as

HI = h̄Λ(c†b+b†c)+ xzpfF(t)
(
b†eiωmt +be−iωmt)+HCR .

(2)
with HCR = h̄Λ[cbexp(−2iωmt)+b†c† exp(2iωmt)] where we
have also assumed ∆ ' ωm. In the resolved sideband regime
where the mechanical frequency is much larger than the
damping rate of the cavity (ωm � κ), HCR can be approxi-
mately neglected. To account for the small correction to the
dynamics caused by HCR in this regime, we use the sideband
truncation approach described in appendix A in our numerical
calculations.
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A. Applying the coherent feedback loop

To investigate the system dynamics, we now include fluc-
tuation and dissipation processes affecting the optical and the
mechanical modes by adding for each of them the correspond-
ing damping and noise term and write the following quantum
Langevin equations

ḃ =− γb+ iΛc+
√

2γ bin,f(t) , (3)

ċ =−κc+ iΛb+
√

2κ1 c(1)in (t)+
√

2κ2 c(2)in (t) , (4)

where c(1)in (t) and c(2)in (t) are the noise operators associated
with the mirrors M1 and M2, respectively. The nanomechani-
cal membrane interacts with a thermal environment at a finite
temperature with a damping rate of γ. The input mechanical
operator bin,f(t) consists of the external force to be detected,
F(t), and a noise operator bin(t),

bin,f(t) =−
i

2
√

h̄mγωm
F(t)eiωmt +bin(t) . (5)

Here, the mechanical noise bin affecting the nanomechanical
membrane satisfies the Markovian correlation functions

〈bin(t)b†
in(t
′)〉= (1+ n̄)δ(t− t ′) , (6)

〈b†
in(t)bin(t ′)〉= n̄δ(t− t ′) , (7)

where n̄ = [exp(h̄ωm/kBT )− 1]−1 is the mean number of
thermal excitations of the mechanical bath at temperature T .
Moreoevre, the nonzero noise correlators associated with the
cavity input are given by [3]

〈c(1)in,0(t)c(1)†in,0 (t
′)〉= δ(t− t ′) , (8)

〈c(2)in (t)c(2)†in (t ′)〉= δ(t− t ′) , (9)

By introducing the total cavity decay rate κ = κ1+κ2 in terms
of the corresponding decay rates of the mirrors, we can for-
mally write the total input noise operator for the cavity field
as
√

2κcin(t) =
√

2κ1 c(1)in (t)+
√

2κ2 c(2)in (t).
We now modify the system dynamics by applying

feedback-controlled in-loop light [9–11, 37]. The operator
c(2)out describes the transmitted output field given by the in-
put–output relation

c(2)out(t) =
√

2κ2 c(t)− c(2)in (t). (10)

We then consider a phase-sensitive detection of an output
quadrature at phase θ

Xθ
out,fb(t) =

e−iθc(2)out(t)+ eiθc(2)†out (t)√
2

. (11)

The resulting photocurrent at the output of the second mirror
is expressed as [11, 37]

ifb(t) =
√

ηXθ
out,fb(t)+

√
1−ηXν(t), (12)

Here, we model the output light due to inefficient detection
of the optical field where η is the detection efficiency and the
operator Xν accounts for the additional noise due to inefficient
detection and fulfills the relation 〈Xν(t)Xν(t ′)〉 = (1/2)δ(t −
t ′).

As shown in Fig. 1, the photocurrent is fed back using an
AOM driver to modulate the amplitude of the input field at
mirror M1. The overall effect of the feedback loop can be
modeled by the electronic noise Φ(t) modulating (displacing)
the open-loop input noise operator c(1)in,0(t). Therefore, the in-
put noise operator applied to the mirror M1 is written as the
superposition of the original input c(1)in,0(t) and an additional
term due to the feedback Φ(t) according to

c(1)in (t) = c(1)in,0(t)+Φ(t). (13)

where Φ(t) = gifb(t− τ), g is the feedback gain, and τ is the
signal time delay in the loop. We consider a feedback loop
with a non-zero delay caused by a latency of electronic pro-
cessing. For high–quality electronic circuits, we can neglect
all dispersion effects. Therefore, we write the delay-time de-
pendence of the photocurrent in Eq. (12) as

ifb(t− τ) =
√

η/2
{

e−iθ
[√

2κ2 c(t− τ)− c(2)in (t− τ)
]

+ eiθ
[√

2κ2 c†(t− τ)− c(2)†in (t− τ)
]}

+
√

1−ηXν(t− τ) . (14)

In the regime where pump detuning is much larger than the
optomechanical coupling and the cavity decay rate (∆�Λ,κ),
it is convenient to rewrite the cavity delayed time operators as
a product of a slowly varying term c̄(2)out(t) and a fast oscillating
one as c(2)out (t− τ)' c̄(2)out(t− τ)e−i∆(t−τ). If the feedback delay
time is much shorter than both the characteristic time of the
optomechanical interaction and the decay time of the cavity,
then the delay time dependence of the slowly varying part,
c̄(2)out(t − τ), can be ignored, therefore we have c̄(2)out(t − τ) '
c̄(2)out(t). We thus can rewrite the output operator as

c(2)out (t− τ)' c̄(2)out(t)e
i∆te−i∆τ = c(2)out(t)e

−i∆τ (15)

By defining a global phase φ = θ+∆τ, we then approximate
Eq. (14) as

ifb(t− τ) =
√

η/2
{

e−iφ
[√

2κ2c(t)− c(2)in (t)
]

+ eiφ
[√

2κ2c†(t)− c(2)†in (t)
]}

+
√

1−ηXν(t) .

(16)

By using equations (13) and (16), we can rewrite the equation
of motion for the cavity field as

ċ =−κc+ iΛb+g
√

2ηκ1κ2

[
e−iφc(t)+ eiφc†(t)

]
+
√

2κfb cin,fb(t),
(17)

where we have used the feedback-modified cavity decay rate

κfb = κ−g
√

2ηκ1κ2 , (18)
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and the corresponding noise operator

cin,fb(t) =
1√
2κfb

{
−g
√

κ1η
[
e−iφc(2)in (t)+ eiφc(2)†in (t)

]
+
√

2κ2c(2)in (t)+g
√

2κ1(1−η)Xν(t)+
√

2κ1c(1)in,0(t)
}
.

(19)

The feedback-modified noise operator obeys the following
correlation functions

〈cin,fb(t)cin,fb(t ′)〉=(nfb−mfb)δ(t− t ′) , (20)

〈c†
in,fb(t)c

†
in,fb(t

′)〉=(nfb−m∗fb)δ(t− t ′) , (21)

〈c†
in,fb(t)cin,fb(t ′)〉=nfbδ(t− t ′) , (22)

〈cin,fb(t)c
†
in,fb(t

′)〉=(nfb+κ/κfb−mfb−m∗fb)δ(t− t ′) , (23)

where we have defined nfb = ζ2/(4ηκ2κfb) as the
feedback-mediated number of thermal excitations and
mfb = (ζ/2κfb)exp(iφ), with feedback reduction of cavity
linewidth ζ = g

√
2ηκ1κ2. This reveals that the cavity decay

rate, as well as the cavity frequency (see Eq. (17)), can
be controlled by manipulating the feedback gain g and the
global phase φ. Moreover, the system can be viewed as
an engineered reservoir interacting with the cavity and me-
chanical mode. Together with correlations (6-7) and (20-23)
the quantum Langevin equations (3) and (17) describe the
evolution of the cavity field and the mechanical motion of the
nanomechanical membrane, including a feedback-controlled
in-loop light and all fluctuation effects. We then summarize
the equations of motion in the following compact matrix form

du(t)
dt

= Au(t)+Hnin,fb(t) . (24)

Here, we have defined the vector of fields
u(t) = [c(t),c†(t),b(t),b†(t)]T , matrix H =
diag

[√
2κ f b,

√
2κ f b,

√
2γ,
√

2γ
]

and the corresponding
vector of noises nin,fb(t) = [cin,fb(t),c

†
in,fb(t),bin,f(t),b

†
in,f(t)]

T .
We have also defined the drift matrix A as

A =


ζe−iφ−κ ζeiφ iΛ 0

ζe−iφ ζeiφ−κ 0 −iΛ
iΛ 0 −γ 0
0 −iΛ 0 −γ

 . (25)

B. System response in the frequency domain

Now that we understand the system dynamics, we can in-
vestigate how the feedback loop can be used for force sensing.
For a detailed treatment and a review of the basic statistical
properties of quantum noise, including its detection and a ba-
sic introduction to weak continuous measurements, see [13].
Equation (24) can be solved in the frequency space by taking
the Fourier transform of all the operators and noise sources in-
troduced via o[ω] = ∫+∞

−∞ dteiωto(t). We then write the solution
of Eq. (24) in the frequency domain as

u[ω] =−(A+ iωI4×4)
−1Hnin,fb[ω] , (26)

where I4×4 is the identity matrix.
By substituting u [ω] into the input-output relation n(2)

out[ω] =
Gu[ω]− n(2)

in [ω], which relates output and input fields, the
fluctuations of the output fields are obtained as

n(2)
out[ω] =−

[
G(A+ iωI4×4)

−1H
]

nin,fb[ω]−n(2)
in [ω]

= s[ω]nin,fb[ω]−n(2)
in [ω] , (27)

where have defined n(2)
in = [c(2)in ,c(2)†in ,bin,f,b

†
in,f]

T , n(2)
out =

[c(2)out,c
(2)†
out ,bout,b

†
out]

T and G = diag
[√

2κ2,
√

2κ2,
√

2γ,
√

2γ
]
.

We have also introduced the scattering matrix s[ω] as

s[ω] =−G(A+ iωI4×4)
−1H, (28)

Note that we use the convention o†[ω] = ∫+∞
−∞dteiωto†(t)

which implies o†[ω] = (o[−ω])†. Full expressions of the scat-
tering matrix elements are given in appendix B.

III. FORCE MEASUREMENT

In this section, we describe force sensing beyond the SQL
in the presence of the feedback loop. We start by deriv-
ing expressions for the mechanical response and the optically
added noise. Then we show that the feedback loop can en-
hance the mechanical response and improve its bandwidth.
We also show how noise suppression and signal amplification
can be achieved by tuning the system parameters, particularly
the asymmetry in the decay rates of the two mirrors. More-
over, the optically added noise and the force sensitivity will
not change much compared to an open-loop system.

A. Spectral characteristics of force

An external force acting on the nanomechanical membrane
displaces it from the equilibrium point which, via the optome-
chanical coupling, affects the optical cavity output. As a con-
sequence, the signal associated with the external force can be
extracted by measuring the optical output generalized in-loop
quadrature, Xφ,(2)

out , given in terms of the input fields by

Xφ,(2)
out =

1√
2
{Ψ[ω]cin,fb +Φ[ω]bin,f +H.c.}−Xφ,(2)

in , (29)

where we have defined the functions Ψ[ω] and Φ[ω] in terms
of the scattering matrix elements given in appendix B as

Ψ[ω] =s11e−iφ + s21eiφ

=
2e−iφ(γ− iω)

√
κ2κfb

−2ζ(γ− iω)cosφ+(γ− iω)(κ− iω)+Λ2 , (30)

Φ[ω] =s13e−iφ + s23eiφ

=
2iΛe−iφ√γκ2

−2ζ(γ− iω)cosφ+(γ− iω)(κ− iω)+Λ2 . (31)
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We then use the output quadrature to estimate the applied ex-
ternal force on the nanomechanical membrane. Using the ex-
pressions for the elements of the scattering matrix, one finally
obtains the following result for the transmitted optical quadra-
ture:

Xφ,(2)
out = Xφ,(2)

out

∣∣∣
F=0

+Xφ
F , (32)

where the contribution of the quantum noise Xφ,(2)
out |F=0 can be

obtained by replacing bin,f → bin and b†
in,f → b†

in in Eq. (29).
Moreover, the contribution of the external force is

Xφ
F =− i

2
√

2h̄mγωm

{
(s13e−iφ + s23eiφ)F [ω+ωm]

−(s14e−iφ + s24eiφ)F [ω−ωm]
}

=
i√

2h̄mγωm
F̄ [ω] , (33)

where we define the transduction force by the force estimator

F̄ [ω] =
1
2
(Φ∗[ω]F [ω−ωm]−Φ[ω]F [ω+ωm]) . (34)

We then define the effective force operator as [38]

Feff[ω] =
Xφ,(2)

out [ω]

∂Xφ,(2)
out [ω]/∂F̄ [ω]

= Nφ[ω]+ F̄ [ω] , (35)

where the noise force operator is given by

Nφ[ω] = i
√

2h̄mγωm Xoutφ,(2)
∣∣
F=0. (36)

We then consider the spectral density of the noise force as

δ(ω+ω′)Sφ
NN(ω) =

1
4π
〈Nφ[ω]Nφ,†[ω′]+ (ω↔ ω′)〉 , (37)

where the notation (ω↔ ω′) denotes the swapping of the ar-
guments of the first term. After straightforward calculations,
the spectrum of the noise force operator, Nφ, is given by

Sφ
NN(ω) = 2h̄mγωmRm[ω]

[(
n̄+

1
2

)
+nadd[ω]

]
, (38)

where we have used correlations in the frequency domain see
appendix C and Rm[ω] is the mechanical response defined by

Rm[ω] =
1
2
(Φ[−ω]Φ∗[ω]+Φ[ω]Φ∗[−ω]) . (39)

In Eq. (38), nadd[ω] is the noise of the measurement process
which can be interpreted as an effective increase in the number
of thermal excitations of the mechanical reservoir due to the
backaction of the optical mode. After evaluating lengthy but
straightforward calculations, the added measurement noise is
given by

nadd[ω] =
1

2Rm[ω]

{[
2Ψ[ω]Ψ[−ω] (nfb−mfb)+ c.c.

]
+
(
Ψ[ω]Ψ∗[−ω]+ c.c.

)(
2nfb +

κ
κfb
−mfb−m∗fb

)
+2− (Ψ[ω]+Ψ[−ω]+ c.c)

(
eiφ p∗fb[ω]+ c.c.

)
−
[
eiφ (Ψ[−ω]+Ψ[ω])+ c.c.

]√
κ2/κfb

}
, (40)

with pfb = (−ζ/
√

4κ2κfb)exp(iφ).
The transduction of the external force and the mechanical

inputs onto the light field is characterized by Eq. (29). This
transduction can be obtained in terms of the corresponding
scattering matrix elements given in Appendix B and finally
translated into functions Φ[ω] and Φ∗[ω]. In the case of an
ideal resonant impulsive force, F [ω] = const., the force esti-
mator F̄ [ω] becomes

F̄ [ω] = Rm[ω]cos2 φF . (41)

B. Mechanical response and the added noise

We next calculate the added noise and the mechanical re-
sponse given by Eqs. (40) and (39), respectively, in the re-
solved sideband regime in the limit where the mechanical fre-
quency is much larger than the cavity decay rate, ωm � κ.
The frequency-dependent mechanical response and the opti-
cally added noise in the rotating wave approximation (RWA)
(with calculations beyond the RWA delegated to the appendix
A) are represented by

Rm[ω] =
4C γ2κκ2

|(C +1)γκ−2ζ(γ− iω)cosφ− iω(γ+κ)−ω2|2
,

(42)

nadd[ω]=
ω2
(
γ2−2C γκ+κ2

)
+(C+1)2γ2κ2−4C γ2κκ2 +ω4

4C γ2κκ2

+

(
ω2 + γ2

)
(1−η)ζ2

2C γ2ηκκ2
, (43)

where C = Λ2/κγ is the optomechanical cooperativity. Eqs.
(42), (43) are expressed in the interaction picture, where ω= 0
means that we look at detection at the cavity resonance fre-
quency. In this case, we are looking at forces that are quasi-
resonant with the mechanical resonator. The on-resonance
mechanical response and the optically added noise are given
by

Rfb
m [ω = 0] =

4Cκκ2

(Cκ−2ζcosφ+κ)2 , (44)

nfb
add[ω = 0] =

(C −1)2

4C
+

(C +1)2κ1

4Cκ2
+

(1−η)ζ2

2Cηκκ2
. (45)

A remarkable result from Eq. (44) is that the on-resonance me-
chanical response is never larger than unity for an open loop
system. That is, a single phonon at the mechanical input can
be converted to only one photon at the output which is a lim-
itation in the functionality of the open-loop system in the red
detuned regime. Therefore according to Eq. (44), the open-
loop system provides only direct transduction of the force and
any force-detection gain is impossible.

We next turn to the numerical calculations of the added
noise and mechanical response by using parameters feasible in
a typical experimental setup of membrane-in-the-middle cav-
ity optomechanical systems [9, 10]. We consider a mode of
vibration with an effective mass of m = 10−12 kg inside an
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FIG. 2. The regions of standard quantum limit suppression nadd[0]<
1/2 (blue honeycomb pattern), signal amplification Rm[0] > 1 (gray
hatched pattern) and the instability (red solid area) as functions of
the optomechanical cooperativity and feedback gain for detection ef-
ficiency η = 0.6. Symmetric cavity with κ2/κ = 0.5 (a) and asym-
metric cavity with κ2/κ = 0.75 (b) and κ2/κ = 0.90 (c). We con-
sider an optical cavity with decay rate κ = κ1 + κ2 = 0.06ωm, the
mechanical decay rate γ/ωm = 3.4× 10−6 and the mechanical fre-
quency ωm = 2π×343.13kHz.

optical cavity with decay rate κ = κ1 + κ2 = 0.06ωm. The
mechanical decay rate is γ/ωm = 3.4×10−6 and the mechan-
ical frequency is ωm = 2π×343.13kHz. The optomechanical
coupling rate, the local oscillator phase, the cavity detuning
and the feedback gain could be tuned in situ.

In Fig. 2, we show the regions of SQL suppression nadd[0]<
1/2 [13, 39, 40] (blue honeycomb pattern) and signal ampli-
fication Rm[0]> 1 (gray-hatched pattern) versus optomechan-
ical cooperativity and feedback gain for three different cavity
configurations. The denominator of the mechanical response
given by Eq. (44) must tend to its smallest possible value to
achieve signal amplification. This puts a constraint on the an-
gle −π/2 < φ < π/2. Hereafter, we take the global phase φ
such that cosφ = 1 to have maximum amplification. Signal
amplification starts when we set ζ ' κ/4 and C = 0.5 for a
symmetric cavity configuration. As is evident from Fig. 2, the
sub-SQL region increases as we increase the ratio of κ2/κ.
For an asymmetric configuration, κ2 > κ1, the regions are
much wider than for a symmetric configuration. Generally,
simultaneous noise suppression and signal amplification can
not be achieved for relatively small values of optomechanical
cooperativity and feedback gain. What is noticeable is that
the feedback plays its role in signal amplification in the red
detuning regime. The additional requirement for performing
the force measurement is that the system under consideration
should be stable. Here, the unstable region is shown by a red
solid region (see appendix D for details on the system’s sta-
bility conditions).

Based on Eqs. (44) and (45), the decay rates of the cav-
ity mirrors influence the system dynamics. We drive the sys-
tem through the mirror M1 which is highly reflective since
we want to reduce any optical losses on this cavity end. This
high reflectivity then requires strong drive and high feedback
gain but, at the same time, ensures that the added noise re-
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FIG. 3. (a) The on-resonant optically added noise of measurement
and (b) the mechanical response as a function of the optomechanical
cooperativity for different ratios of κ2/κ, fixed values of the feedback
gain ζ/κ = 0.49 and the detection efficiency η = 1. (c) The on-
resonant optically added noise and (d) the mechanical response as a
function of the optomechanical cooperativity for different values of
feedback gain, fixed κ2/κ = 0.95 and detection efficiency η = 0.6.
The line with ζ/κ= 0 corresponds to the no feedback scenario. Other
parameters given in caption of Fig. 2. The noise suppression (beyond
SQL, nadd[0]< 1/2) and signal amplification (Rm[0]> 1) regions are
shown in blue and red, respectively.

mains low. On the other hand, the signal we detect has to
be sufficiently large so the mirror M2 has to be more trans-
missive. Indeed, in the symmetric case, κ1 = κ2, it is clear
that in the limit of C → 1, the added optical noise in Eq. (45)
is nadd[ω = 0] = 1, and the maximum value of the mechani-
cal response is Rfb

m [ω = 0] = 2 (assuming unit detection effi-
ciency). The minimum added noise is obtained by using an
asymmetric cavity with the mirror M1 less transmissive than
the mirror M2. Therefore, this proposal will be optimal in
situations where we use an asymmetric cavity κ1 < κ2. In
the strongly asymmetric case, κ1 � κ2, with unit detection
efficiency, in the limit of C → 1, the added optical noise is,
nadd[ω = 0] ' κ1/κ2, and the maximum achievable mechani-
cal response is Rfb

m [ω = 0] = 4.
The on-resonance optically added noise and the mechani-

cal response versus optomechanical cooperativity for differ-
ent cavity asymmetries and a fixed value of feedback gain are
shown in Figs. 3 (a) and (b). We see that asymmetric cavities
with κ2 > κ1 are preferable for suppressing noise below SQL
and amplifying the signal. Although the backaction and the
feedback loop introduce measurement noise to the force mea-
surement, with an appropriate choice of parameters, the mea-
surement noise can be significantly reduced below the SQL.



7

10−1

101

103

105

A
dd

ed
no

is
e
n
a
d
d
[!

]
»2=» = 0:95 »2=» = 0:9

»2=» = 0:7 »2=» = 0:5

»2=» = 0:3 »2=» = 0:1

“=» = 0:49 “=» = 0:4

“=» = 0:3 “=» = 0:2

“=» = 0:1 “=» = 0:0

10−2 10−1 100 101 102
10−1

100

101

!=‚

M
ec

ha
ni

ca
lr

es
po

ns
e
R

m
[!

]

10−2 10−1 100 101 102

!=‚

0 1=4 1=2
100

101

102

“=»

FW
H

M
[!
=
‚
]

Beyond SQL Beyond SQL

Amplification Amplification

b

a

d

c

e

FIG. 4. (a) The off-resonant optically added noise of measurement
and (b) the mechanical response as a function of the normalized fre-
quency for different ratios of κ2/κ for fixed values of the feedback
gain ζ/κ = 0.49 and the optomechanical cooperativity C = 1. (c)
The off-resonant optically added noise of measurement and (d) the
mechanical response as a function of the normalized frequency for
different values of feedback gain and fixed κ2/κ = 0.95, optome-
chanical cooperativity C = 1 and detection efficiency η = 0.6. The
line with ζ/κ = 0 corresponds to the no feedback scenario. The
noise suppression (beyond SQL, nadd < 1/2) and signal amplifica-
tion (Rm > 1) regions are shown by blue and red area, respectively.
(e) FWHM as a function of the feedback gain. Other parameters
given in the caption of Fig. 2.

For instance, by using a high–efficiency detector (η ' 1), the
last term in Eq. (45), which is due to the feedback loop, can
be neglected. In Figs. 3 (c) and (d), we show the optically
added noise and the mechanical response as a function of the
optomechanical cooperativity for different values of feedback
gain and fixed value of the cavity decay ratio. We have a large
gain for small cooperativities at higher feedback gain, but the
cost of the strong signal amplification is an increase in the
added measurement noise. Nevertheless, the added noise is
not excessively large in the region of interest (overlap of the
amplification, sub-SQL and stable regions) to influence a pre-
cise force measurement.

The optically added noise and the mechanical response
away from the resonance (ω 6= 0) for different ratios of κ2/κ
and for a fixed value of feedback gain and optomechanical co-

operativity C = 1 are depicted in Figs. 4 (a) and (b). Again
it helps to have a largely asymmetric cavity and high feed-
back gain to achieve strong mechanical response. In Figs. 4
(c) and (d), we plot the off-resonant optically added noise and
the mechanical response as a function of the normalized fre-
quency. One can see that the range of signal frequencies over
which there is amplification increase as we increase the feed-
back gain. Outside a certain frequency band, the mechanical
response to the input signal drops compared to the response
at resonance. We quantify the bandwidth of the amplification
by the full width at half maximum (FWHM) of the mechani-
cal response. That is, we solve the equation Rm[ω] = Rm[0]/2
and the difference between the two values of the frequencies
at which the mechanical response is equal to half of its max-
imum value is chosen to be FWHM. In Fig. 4 (e), we plot
FWHM as a function of feedback gain to show the increase in
amplification bandwidth. This way, the total detection band-
width is improved with high gain since the spectrum of the
added noise is almost unaffected by the feedback. Moreover,
there is no limitation on the gain-bandwidth product. That is,
as we increase the mechanical response, we also increase the
amplification bandwidth.

C. Force sensitivity

We use the homodyne photocurrent of Eq. (29) to perform
force measurements [41]. In the case of stationary spectral
measurements the signal S(ω) is

S [ω] =
∣∣∣〈Xφ,(2)

out [ω]
〉∣∣∣ . (46)

The noise associated with the signal S (ω) is given by its stan-
dard deviation

N [ω] =
[

1
2

〈[
Xφ,(2)

out (ω)Xφ,(2)
out (−ω)+(ω↔−ω)

]〉
F=0

]1/2

,

(47)

and it is evaluated in the absence of the external force F = 0.
The signal-to-noise ratio (SNR) is defined to be the ratio of
the signal, Eq. (46), to the variance of all the noises, Eq. (47),
of a given measured signal and it quantifies how much the
signal is corrupted by the noise introduced by the system [41,
42]. Here, we are interested in spectral measurements that are
stationary, that is, in the limit in which the measurement time
approaches infinity [41, 42]. We define SNR as

SNR[ω] =
S [ω]
N [ω]

=
|F̄ [ω]|√

2h̄mγωmRm[ω] (n̄+1/2+nadd[ω])1/2

=
|(Φ∗[ω]F [ω−ωm]−Φ[ω]F [ω+ωm])/2|√

2h̄mγωmRm[ω](n̄+1/2+nadd[ω])1/2 , (48)

In the case of an ideal resonant impulsive force, F [ω] = const.,
SNR of the system becomes

SNR[ω] =
|cosφ|F√

2h̄mγωm(n̄+1/2+nadd[ω])1/2 . (49)
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As expected, the SNR of the system depends on the optically
added noise, the thermal noise and the global phase. Since
the signal enters into the system through the same channel as
the thermal noise, the mechanical gain amplifies both the in-
put signal and the mechanical thermal and quantum noises.
That is, the enhancement in the mechanical gain does not lead
to the improvement of the force sensitivity and the SNR. Al-
though the added noise and the thermal noise can be reduced
for an open-loop system, the mechanical response never be-
comes greater than unity. In contrast, in closed-loop dynam-
ics, we can simultaneously increase the mechanical response
by the feedback loop and reduce the added noise by the red-
detuned laser drive.

We now turn to the investigation of the force sensitivity of
the system. We quantify the sensitivity of the measurement by
the system SNR [42], given by Eq (49). Performing a more
sensitive measurement requires a greater associated SNR [42].
There is a minimum value of SNR that allows the detection
of the force signal. The minimum detectable input of the de-
vice is the minimum signal required to produce an output with
SNR[ω] = 1 [38, 42–44]. Therefore based on Eq (48), the sen-
sitivity of a detector describes the minimum magnitude of the
input signal that can be faithfully detected and measured, and
it is defined as

S[ω] =
√

2h̄mγωm

[(
n̄+

1
2

)
+nadd[ω]

]1/2

. (50)

In Fig. 5 (a), we plot the force sensitivity as a function of
the normalized frequency for different values of the feedback
parameter and inefficent detection η = 0.6. We see that al-
though we have nearly the same sensitivity for all feedback
parameters, inefficent detection reduces the force sensitivity.
As can be deduced from Eq. (50), the less noise we have, the
better the sensitivity we can achieve. As a result, Eq. (50)
suggests that we can improve the sensitivity by setting the
value of the added noise as small as possible. As shown in
Fig. 5 (b), thermal noise dramatically reduces the sensitivity
of the system. Therefore, for a high-precision force sensing,
we need to cool the environment to keep the thermal noise
n̄ as small as possible. For instance, for a system at room
temperature T = 300K (n̄ = 1.8× 107), the value of sensi-
tivity is S = 2.5× 10−16 N/

√
Hz, which can be improved to

S = 4.1×10−20 N/
√

Hz by cooling the mechanical motion to
zero temperature using cooling techniques.

IV. SUMMARY AND CONCLUSION

We present a scheme for highly sensitive detection of
forces achievable with state-of-the-art optomechanical sys-
tems [9, 10, 24]. The scheme manifests the potential of current
experimental setups of membrane-in-the-middle cavity op-
tomechanical systems to be employed as high-precision force
sensors. The proposed force sensor is based on the optome-
chanical interaction between an optical mode and a nanome-
chanical membrane assisted by feedback-controlled in-loop
light. We have shown that the optical cavity subjected to the
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FIG. 5. (a) Force sensitivity at zero temperature as a function of the
normalized frequency and (b) force sensitivity at finite temperature
for different values of feedback gain and fixed κ2/κ = 0.95, optome-
chanical cooperativity C = 1 and detection efficiency η = 0.6. The
line with ζ/κ = 0 corresponds to the no-feedback scenario. Other
parameters given in the caption of Fig. 2

feedback loop is a powerful tool for manipulating mechani-
cal systems. An asymmetric optomechanical cavity in the re-
solved sideband regime ensures low measurement noise; the
feedback loop provides a high mechanical gain and large de-
tection bandwidth.

The applicability of our method depends strongly on the
used parameter regime. In the classical regime, where ther-
mal noise is the main limiting factor, amplifying the mechani-
cal response using measurement feedback does not provide an
advantage. As the SNR and the sensitivity of the system are
not improved compared to open-loop dynamics, the closed-
loop system performs equivalently. In the regime of quantum
sensors, where thermal noise is small (n̄ is of order one or
less), the situation is, however, completely different. First,
if one decreases the measurement noise nadd, its effect will be
more significant on a relative scale: one can go below the SQL
by reducing the added noise to a negligible level. Second, it
is also useful to amplify the mechanical motion to reduce the
risk of the homodyne detector not registering any signal at
all. With that one amplifies thermal noise as well, but as its
negative effect is not significant for n̄ ' 1, it is a price worth
paying. In summary, in this regime, noise reduction and signal
amplification can be both extremely useful, which is impossi-
ble to achieve in the open-loop case.

In the future, the proposed optomechanical setup could be
modified to a single-sided cavity with an optical isolator. Such
architecture would exhibit reduced optical loss, thus enhanc-
ing the effect of feedback on the system, and allow combi-
nation with squeezed vacuum injection for further increase of
the measurement sensitivity. At the same time, such a system
has one parameter less for optimization and would require an
optical isolator to separate the output signal from input driv-
ing field. A detailed comparison of the performance of the
two cavities could then provide important insight into the per-
formance of feedback schemes in optomechanical systems.
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Appendix A: Beyond the rotating wave approximation

We investigate the system dynamics beyond RWA by us-
ing the Floquet approach [45, 46]. When including counter-
rotating terms, the time-dependent equations of motion arise
as

du(t)
dt

= A(t)u(t)+Hnin,fb(t) . (A1)

We can write A(t) = ∑1
n=−1 A(n)e−2inωmt = A(−1)e−2iωmt +

A(0)+A(1)e2iωmt where A(0) = A in Eq. (25) and

A(1) =

 0 0 0 iΛ
0 0 0 0
0 iΛ 0 0
0 0 0 0

 , A(−1) =

 0 0 0 0
0 0 −iΛ 0
0 0 0 0
−iΛ 0 0 0

 .

(A2)
By defining the system in terms of its Fourier components as

u(t) = ∑∞
n=−∞ u(n)(t)e−2inωmt , (A3)

we can write Eq. (A1) in the frequency domain in the follow-
ing matrix form

(−iω−2inωm)u(n)[ω] = A(−1)u(n−1)[ω]+A(0)u(n)[ω]

+A(1)u(n+1)[ω]+δn,0Hnin,fb[ω].
(A4)

In RWA, A(n6=0) = 0, we neglect terms containing ω±2ωm in
these equations. Counter-rotating components introduce side-
bands shifted by ±2ωm. We can then write Eq. (A4) as

ū[ω] =−
(
iωI12×12 + Ā

)−1H̄n̄in,fb[ω] , (A5)

where I12×12 is the identity matrix and we define the vector
of fluctuation as ū =

[
u(−1)[ω],u(0)[ω],u(1)[ω]

]
and its corre-

sponding noise vector as n̄in,fb[ω] = [0,nin,fb[ω],0]. Moreover,
H̄ = diag[0,H,0] and the matrix Ā is given by

Ā =

 A(0)−2iωmI4×4 A(1) 0
A(−1) A(0) A(1)

0 A(−1) A(0)+2iωmI4×4

 . (A6)
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FIG. 6. (a) The optically added noise of measurement and (b) the
mechanical response as a function of the optomechanical coopera-
tivity for different values of feedback gain and for fixed κ2/κ = 0.95
and κ = 2ωm. Solid lines and dashed lines correspond to beyond the
RWA and RWA, respectively. Other parameters same as before. The
noise suppression and the signal amplification regions are shown in
blue and red, respectively.

By substituting ū [ω] into the input-output relation the fluctu-
ations of the output fields can be obtained.

In Fig. 6 (a), we show the optically added noise for a sys-
tem with κ = 2ωm to which RWA does not apply. The dashed
lines correspond to the RWA in the system dynamics. One can
see that the influence of the counter-rotating terms appears as
we increase the optomechanical cooperativity. The minimum
of the added noise increases by considering counter-rotating
term and hence the system sensitivity decreases. In Fig. 6 (b),
we plot the mechanical response as a function of the optome-
chanical cooperativity for different values of feedback gain.
We can also see that the counter-rotating terms contribute to
the signal amplification in the system. Therefore, the price
paid for signal amplification beyond RWA is sensitivity re-
duction.

Appendix B: Scattering matrix elements

The output and input fields are related via the scattering
matrix s as

n(2)
out[ω] = s[ω]nin,fb[ω]−n(2)

in [ω] , (B1)

where have defined nin,fb = [cin,fb,c
†
in,fb,bin,f,b

†
in,f]

T , n(2)
in =

[c(2)in ,c(2)†in ,bin,b
†
in]

T , n(2)
out = [c(2)out,c

(2)†
out ,bout,b

†
out]

T . Hereafter,
the frequency dependence of these coefficients, represented
by ω is implicit for conciseness of notation. By introducing
the susceptibilities of the cavity field and the mechanical os-
cillator as

χ−1
c [ω] =−κ+ iω+ζe−iφ , (B2)

χ−1
m [ω] =−γ+ iω , (B3)

with χ∗c [ω] = (χc[−ω])∗ and χ∗m[ω] = (χm[−ω])∗ and after
straightforward calculations, we obtain the matrix elements
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si j with i, j = 1, . . . ,4 as

s11 =−2
√

κ2κfbχcΞ
(
Λ2χ∗cχ∗m +1

)
, (B4a)

s12 =2
√

κ2κfbζeiφχcχ∗cΞ , (B4b)

s13 =2i
√

γκ2χcχmΛΞ
(
Λ2χ∗cχ∗m +1

)
, (B4c)

s14 =2i
√

γκ2ζeiφΛχcχ∗cχ∗mΞ , (B4d)

s21 =2
√

κ2κfbζe−iφχcχ∗cΞ , (B4e)

s22 =−2
√

κ2κfbχ∗cΞ
(
Λ2χcχm +1

)
, (B4f)

s23 =−2i
√

γκ2ζe−iφΛχcχ∗cχmΞ , (B4g)

s24 =−2i
√

γκ2χ∗cχ∗mΛΞ
(
Λ2χcχm +1

)
, (B4h)

s31 =2i
√

γκfbχcχmΛΞ
(
Λ2χ∗cχ∗m +1

)
, (B4i)

s32 =−2i
√

γκfbζeiφΛχcχ∗cχmΞ , (B4j)

s33 =2γχmΞ
[
χ∗c
(
ζ2χc−Λ2χ∗m

)
−1
]
, (B4k)

s34 =2γζeiφΛ2χcχ∗cχmχ∗mΞ , (B4l)

s41 =2i
√

γκfbζe−iφΛχcχ∗cχ∗mΞ , (B4m)

s42 =−2i
√

γκfbχ∗cχ∗mΛΞ
(
Λ2χcχm +1

)
, (B4n)

s43 =2γζΛ2e−iφχcχ∗cχmχ∗mΞ , (B4o)

s44 =2γχ∗mΞ
[
χc
(
ζ2χ∗c−Λ2χm

)
−1
]
, (B4p)

where we have defined

Ξ−1 = Λ2 (Λ2χcχ∗cχmχ∗m +χcχm +χ∗cχ∗m
)
+1−ζ2χcχ∗c ,

(B5)

Evidently, the output measurement quadrature of the field de-
pends on the phase of the local oscillator, the feedback gain
and the optomechanical coupling rate. In the case of zero op-
tomechanical interaction Λ = 0, the elements s13, s14, s23, s24,
s31, s32, s41 and s42 become zero as one should expect.

Appendix C: Correlations in the frequency domain

Here, we transform correlations given by Eqs. (20)-(23)
into the frequency-domain

〈cin,fb[ω]cin,fb[ω′]〉=2π(nfb−mfb)δ(ω+ω′) , (C1)

〈c†
in,fb[ω]c

†
in,fb[ω

′]〉=2π(nfb−m∗fb)δ(ω+ω′) , (C2)

〈c†
in,fb[ω]cin,fb[ω′]〉=2πnfbδ(ω+ω′) , (C3)

〈cin,fb[ω]c†
in,fb[ω

′]〉=2π
(
nfb+

κ
κfb
−mfb−m∗fb

)
δ(ω+ω′) ,

(C4)

We also use the following correlations in the derivation of the
noise spectrum

〈c(2)in [ω]cin,fb[ω′]〉= 2πpfbδ(ω+ω′) , (C5)

〈c(2)in [ω]c†
in,fb[ω

′]〉= 2π
(

pfb +
√

κ2/κfb

)
δ(ω+ω′) , (C6)

〈c(2)†in [ω]c†
in,fb[ω

′]〉= 〈c(2)†in [ω]cin,fb(t ′)〉= 0 , (C7)

〈cin,fb[ω]c
(2)†
in [ω′]〉= 2π

(
p∗fb[ω]+

√
κ2/κfb

)
δ(ω+ω′) ,

(C8)

〈c†
in,fb[ω]c

(2)†
in [ω′]〉= 2πp∗fbδ(ω+ω′) , (C9)

〈cin,fb[ω]c
(2)
in [ω′]〉= 〈c†

in,fbc(2)in [ω′]〉= 0 , (C10)

Appendix D: System stability

In this appendix, we use the Routh–Hurwitz criterion to in-
vestigate the stability of the system. The system reaches its
steady state when all the eigenvalues of the drift matrix A have
negative real parts [47]. The system is stable if the following
conditions are satisfied:

C1 =γ−ζcosφ+κ > 0 , (D1)

C2 =ζcosφ
[
−4γ2− (C +8)γκ+2ζ(2γ+κ)cosφ−3κ2]

+(γ+κ)
[
γ2 +(C +3)γκ+κ2]> 0 , (D2)

C3 =
{

ζcosφ [ζcosφ(Cκ+2κ+2γ)− (γ+κ)(2Cκ+3κ+ γ)]

+κ(C +1)(γ+κ)2}(γ−2ζcosφ+κ)> 0 , (D3)

C4 =Cκ−2ζcosφ+κ > 0 . (D4)
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