Process algebras and agent-based models have proven to be effective methods for studying biologi- cal systems. Our research employs such techniques to investigate the behaviours that characterise biological macromolecules and reveal the global properties of biochemical processes resulting from local molecular interactions. This dissertation consists of two parts. In the first one, we use formal methods, such as the Calculus of Communicating Systems, to demonstrate the existence of a con- gruence level at which the folding of RNA molecules is behaviourally equivalent to that of proteins. This finding allows us to hypothesise the role that RNA functional complexity played during the evo- lutionary process that led proteins to emerge as the primary catalysts in modern cells. We also rely on such a representation to model how an error in the genetic code–i.e., a mutation–can propagate through each step of the synthesis of a new protein, ultimately affecting its folded conformation. We formally prove that the different complexity of RNA and protein folding results in significantly dis- similar impacts that a single nucleotide mutation can have on the structures of proteins compared to those of RNAs. In the second part of this manuscript, we describe an agent-based approach that we specially designed to investigate the global behaviour of long-distance electrodynamic interac- tions among biomolecules. Agents are software entities that can perceive their environment and operate on it autonomously. Using agent-oriented programming, we created a software replica of glycolysis–the metabolic process that provides energy to cells through glucose oxidation. The abil- ity of agents to reproduce molecular behaviours makes it possible to study biochemical processes in a virtual environment and interpret them as the result of underlying molecular interactions. Fur- thermore, the generated agent interaction matrix can be filtered using topological data analysis, allowing us to investigate the role of 2-simplex formation in biochemical reactions. Our goal is to understand how specific types of molecular interactions influence glycolysis effectiveness, par- ticularly in cancer cells. The two parts that make up our work represent the main phases of the engineering life cycle for the simulation of enzyme behaviour; they are intended as the preliminary steps in the development of a computational framework able to contribute to cancer studies per- formed on experimental data. This research sheds new light on how biomolecules interact and lays the groundwork for in silico personalised and precision medicine.

Process-based Modelling of RNA and Protein Interactions: a Formal Approach

MAESTRI, STEFANO
2020-12-28

Abstract

Process algebras and agent-based models have proven to be effective methods for studying biologi- cal systems. Our research employs such techniques to investigate the behaviours that characterise biological macromolecules and reveal the global properties of biochemical processes resulting from local molecular interactions. This dissertation consists of two parts. In the first one, we use formal methods, such as the Calculus of Communicating Systems, to demonstrate the existence of a con- gruence level at which the folding of RNA molecules is behaviourally equivalent to that of proteins. This finding allows us to hypothesise the role that RNA functional complexity played during the evo- lutionary process that led proteins to emerge as the primary catalysts in modern cells. We also rely on such a representation to model how an error in the genetic code–i.e., a mutation–can propagate through each step of the synthesis of a new protein, ultimately affecting its folded conformation. We formally prove that the different complexity of RNA and protein folding results in significantly dis- similar impacts that a single nucleotide mutation can have on the structures of proteins compared to those of RNAs. In the second part of this manuscript, we describe an agent-based approach that we specially designed to investigate the global behaviour of long-distance electrodynamic interac- tions among biomolecules. Agents are software entities that can perceive their environment and operate on it autonomously. Using agent-oriented programming, we created a software replica of glycolysis–the metabolic process that provides energy to cells through glucose oxidation. The abil- ity of agents to reproduce molecular behaviours makes it possible to study biochemical processes in a virtual environment and interpret them as the result of underlying molecular interactions. Fur- thermore, the generated agent interaction matrix can be filtered using topological data analysis, allowing us to investigate the role of 2-simplex formation in biochemical reactions. Our goal is to understand how specific types of molecular interactions influence glycolysis effectiveness, par- ticularly in cancer cells. The two parts that make up our work represent the main phases of the engineering life cycle for the simulation of enzyme behaviour; they are intended as the preliminary steps in the development of a computational framework able to contribute to cancer studies per- formed on experimental data. This research sheds new light on how biomolecules interact and lays the groundwork for in silico personalised and precision medicine.
28-dic-2020
Science and Technology
Les algèbres de processus et les modèles à base d’agents se sont révélés être des méthodes efficaces pour étudier les systèmes biologiques. Notre recherche utilise de telles techniques pour étudier les comportements qui caractérisent les macromolécules biologiques et révéler les propriétés globales des processus biochimiques résultant des interactions moléculaires locales. Cette thèse se compose de deux parties. Dans la première, nous utilisons des méthodes formelles, telles que le calcul des systèmes communicants, pour prouver l’existence d’un niveau de congruence auquel le repliement de l’ARN est comportementalement équivalent à celui des protéines. Cette découverte nous permet d’émettre l’hypothèse du rôle que la complexité fonctionnelle de l’ARN a joué au cours du proces- sus évolutif qui a conduit les protéines à émerger en tant que catalyseurs primaires dans les cel- lules modernes. Nous nous appuyons également sur une telle représentation pour modéliser com- ment une erreur dans le code génétique – c’est-à-dire une mutation – peut se propager à chaque étape de la synthèse d’une nouvelle protéine, affectant finalement sa conformation repliée. Nous démontrons formellement que la complexité différente du repliement de l’ARN et des protéines entraîne un impact significativement différent qu’une seule mutation de nucléotide peut avoir sur les structures des protéines par rapport à celles des ARN. Dans la seconde partie de ce manuscrit, nous décrivons une approche à base d’agents que nous avons spécialement conçue pour étudier le comportement global des interactions électrodynamiques à longue distance entre les biomolécules. Les agents sont des entités logicielles capables de percevoir leur environnement et d’y opérer de manière autonome. À l’aide d’une programmation orientée agent, nous avons créé une réplique logicielle de la glycolyse – le processus métabolique qui fournit de l’énergie aux cellules par l’oxy- dation du glucose. La capacité des agents à reproduire des comportements moléculaires permet d’étudier des processus biochimiques dans un environnement virtuel et de les interpréter comme le résultat d’interactions moléculaires sous-jacentes. De plus, la matrice d’interaction d’agent générée peut être filtrée à l’aide de l’analyse topologique de données, ce qui nous permet d’étudier le rôle de la formation de 2-simplexes dans les réactions biochimiques. Notre objectif est de comprendre comment des types spécifiques d’interactions moléculaires influencent l’efficacité de la glycolyse, en particulier dans les cellules cancéreuses. Les deux parties qui composent notre travail représen- tent les principales phases du cycle de vie de l’ingénierie pour la simulation du comportement en- zymatique ; elles sont conçues comme les étapes préliminaires du développement d’un cadre infor- matique capable de contribuer aux études sur le cancer réalisées sur des données expérimentales. Cette recherche apporte un nouvel éclairage sur l’interaction des biomolécules et jette les bases d’une médecine in silico personnalisée et de précision.
Settore INF/01 - Informatica
Settore INFO-01/A - Informatica
URN:NBN:IT:UNICAM-117168
MERELLI, Emanuela
File in questo prodotto:
File Dimensione Formato  
stefano_maestri 28.12.2020pdf.pdf

Open Access dal 29/12/2021

Descrizione: Tesi di dottorato STEFANO MAESTRI
Tipologia: Altro materiale allegato
Licenza: PUBBLICO - Creative Commons
Dimensione 32.71 MB
Formato Adobe PDF
32.71 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/480205
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact