Ethnopharmacological relevance: Dolomiaea costus (Falc.), formerly Saussurea costus (Falc.) Lipsch., an ayurvedic medicinal plant, has long been recognized and utilized in diverse indigenous systems of medicine for its multifaceted therapeutic properties, including anti-inflammatory, carminative, expectorant, antiarthritic, antiseptic, aphrodisiac, anodyne, and antidiabetic effects. Aim of the study: The potential and underlying mechanisms of D. costus root as an antidiabetic agent were investigated in this study. Additionally, the quantification of phenolic and flavonoid compounds, which dominate the extracts, was of particular interest in order to elucidate their contribution to the observed effects. Materials and methods: High-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) was employed to analyze the chemical constituents in D. costus root aqueous extract (DCA) and D. costus root ethanolic extract (DCE). Furthermore, the inhibitory potentials of DCE and its respective fractions as well as DCA against α-amylase, α-glucosidase, and lipase enzymes were assessed. Subsequently, the efficacy of DCA and DCE extracts was evaluated using an established streptozotocin (STZ)-induced diabetic animal model; this involved administering the extracts at doses of 200 and 400 mg/kg bwt. and comparing them with a positive control (glibenclamide (Glib.) at 0.6 mg/kg bwt.). After induction of diabetes (except for negative control), all animals received the treatments orally for 21 days consecutively, followed by the collection of rat serum to assess various parameters including, glycemic and lipid profiles, liver and kidney functions, antioxidant activity, glycolysis, and gluconeogenesis pathways. Results: The results of HPLC-ESI-MS/MS revealed that isochlorogenic acid A (8393.64 μg/g) and chlorogenic acid (6532.65 μg/g) were the predominant compounds in DCE and DCA, respectively. Both extracts exhibited notable antidiabetic properties, as evidenced by their ability to regulate blood glycemic and lipid profiles (glucose, insulin, HBA1C; HDL, TC, TGs), liver enzymes (ALT, ALP, AST), kidney function (urea, creatinine, uric acid), oxidative stress biomarkers (MDA), antioxidant enzymes (CAT, GSH, SOD), as well as glycolysis (glucokinase) and gluconeogenesis (G-6-P, FBP1) pathways. Conclusions: Furthermore, the administration of D. costus extracts significantly mitigated STZ-induced diabetic hyperglycemia. These results can be attributed, at least partially, to the presence of several polyphenolic compounds with potent antioxidant and anti-inflammatory activities.

Unveiling the chemical profiling and remarkable modulation of carbohydrate metabolism by costus root, Dolomiaea costus (Falc.) in streptozotocin (STZ)-induced diabetic rats

Giovanni Caprioli;
2024-01-01

Abstract

Ethnopharmacological relevance: Dolomiaea costus (Falc.), formerly Saussurea costus (Falc.) Lipsch., an ayurvedic medicinal plant, has long been recognized and utilized in diverse indigenous systems of medicine for its multifaceted therapeutic properties, including anti-inflammatory, carminative, expectorant, antiarthritic, antiseptic, aphrodisiac, anodyne, and antidiabetic effects. Aim of the study: The potential and underlying mechanisms of D. costus root as an antidiabetic agent were investigated in this study. Additionally, the quantification of phenolic and flavonoid compounds, which dominate the extracts, was of particular interest in order to elucidate their contribution to the observed effects. Materials and methods: High-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) was employed to analyze the chemical constituents in D. costus root aqueous extract (DCA) and D. costus root ethanolic extract (DCE). Furthermore, the inhibitory potentials of DCE and its respective fractions as well as DCA against α-amylase, α-glucosidase, and lipase enzymes were assessed. Subsequently, the efficacy of DCA and DCE extracts was evaluated using an established streptozotocin (STZ)-induced diabetic animal model; this involved administering the extracts at doses of 200 and 400 mg/kg bwt. and comparing them with a positive control (glibenclamide (Glib.) at 0.6 mg/kg bwt.). After induction of diabetes (except for negative control), all animals received the treatments orally for 21 days consecutively, followed by the collection of rat serum to assess various parameters including, glycemic and lipid profiles, liver and kidney functions, antioxidant activity, glycolysis, and gluconeogenesis pathways. Results: The results of HPLC-ESI-MS/MS revealed that isochlorogenic acid A (8393.64 μg/g) and chlorogenic acid (6532.65 μg/g) were the predominant compounds in DCE and DCA, respectively. Both extracts exhibited notable antidiabetic properties, as evidenced by their ability to regulate blood glycemic and lipid profiles (glucose, insulin, HBA1C; HDL, TC, TGs), liver enzymes (ALT, ALP, AST), kidney function (urea, creatinine, uric acid), oxidative stress biomarkers (MDA), antioxidant enzymes (CAT, GSH, SOD), as well as glycolysis (glucokinase) and gluconeogenesis (G-6-P, FBP1) pathways. Conclusions: Furthermore, the administration of D. costus extracts significantly mitigated STZ-induced diabetic hyperglycemia. These results can be attributed, at least partially, to the presence of several polyphenolic compounds with potent antioxidant and anti-inflammatory activities.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/479405
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact