The self-assembling behavior, secondary structure, and surface hydrophobicity of purified donkey β-casein in terms of pH, temperature, and buffer concentration were investigated in comparison with commercial bovine β-casein. Critical micelle concentration of both β-caseins decreased with the lowering of pH (pH 8.0–6.0) and the increasing temperatures (25–50 °C). Critical micelle temperature of both β-caseins increased moving from pH 6.0 to 8.0 and aggregates larger than micelles formed at pH 6.0 that is close to their isoelectric point. Fluorescence spectroscopy analysis demonstrated that the maximum surface hydrophobicity was achieved at pH 6.0. The secondary structure was examined using circular dichroism spectroscopy, highlighting an increase of α-helix content and a decrease of unordered structures with the decrease of pH and increase of temperature. This work provides insights on parameters promoting molecular interactions involved in donkey β-CN self-association, useful to develop nanocarriers for encapsulating bioactive compounds in pharmaceutical and nutraceutical applications.

The effects of pH, temperature, and buffer concentration on the self-assembling behavior, secondary structure, and surface hydrophobicity of donkey and bovine β-casein

Jingjing, Zhang
Primo
;
Silvia, Vincenzetti
Secondo
;
Paolo, Polidori;Valeria, Polzonetti;Diego Romano, Perinelli;Stefania, Pucciarelli
Ultimo
2024-01-01

Abstract

The self-assembling behavior, secondary structure, and surface hydrophobicity of purified donkey β-casein in terms of pH, temperature, and buffer concentration were investigated in comparison with commercial bovine β-casein. Critical micelle concentration of both β-caseins decreased with the lowering of pH (pH 8.0–6.0) and the increasing temperatures (25–50 °C). Critical micelle temperature of both β-caseins increased moving from pH 6.0 to 8.0 and aggregates larger than micelles formed at pH 6.0 that is close to their isoelectric point. Fluorescence spectroscopy analysis demonstrated that the maximum surface hydrophobicity was achieved at pH 6.0. The secondary structure was examined using circular dichroism spectroscopy, highlighting an increase of α-helix content and a decrease of unordered structures with the decrease of pH and increase of temperature. This work provides insights on parameters promoting molecular interactions involved in donkey β-CN self-association, useful to develop nanocarriers for encapsulating bioactive compounds in pharmaceutical and nutraceutical applications.
2024
262
File in questo prodotto:
File Dimensione Formato  
Food Chemistry 2024.pdf

accesso aperto

Tipologia: Versione Editoriale
Licenza: PUBBLICO - Creative Commons
Dimensione 3.26 MB
Formato Adobe PDF
3.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/476244
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact