: Animals can sense their changing internal needs and then generate specific physiological and behavioural responses in order to restore homeostasis. Water-saline homeostasis derives from balances of water and sodium intake and output (drinking and diuresis, salt appetite and natriuresis), maintaining an appropriate composition and volume of extracellular fluid. Thirst is the sensation which drives to seek and consume water, regulated in the central nervous system by both neural and chemical signals. Water and electrolyte homeostasis depends on finely tuned physiological mechanisms, mainly susceptible to plasma Na+ concentration and osmotic pressure, but also to blood volume and arterial pressure. Increases of osmotic pressure as slight as 1-2% are enough to induce thirst ("homeostatic" or cellular), by activation of specialized osmoreceptors in the circumventricular organs, outside the blood-brain barrier. Presystemic anticipatory signals (by oropharyngeal or gastrointestinal receptors) inhibit thirst when fluids are ingested, or stimulate thirst associated with food intake. Hypovolemia, arterial hypotension, Angiotensin II stimulate thirst ("hypovolemic thirst", "extracellular dehydration"). Hypervolemia, hypertension, Atrial Natriuretic Peptide inhibit thirst. Circadian rhythms of thirst are also detectable, driven by suprachiasmatic nucleus in the hypothalamus. Such homeostasis and other fundamental physiological functions (cardiocircolatory, thermoregulation, food intake) are highly interdependent.

Thirst: neuroendocrine regulation in mammals

Todini, Luca
Primo
;
Fantuz, Francesco
Ultimo
2023-01-01

Abstract

: Animals can sense their changing internal needs and then generate specific physiological and behavioural responses in order to restore homeostasis. Water-saline homeostasis derives from balances of water and sodium intake and output (drinking and diuresis, salt appetite and natriuresis), maintaining an appropriate composition and volume of extracellular fluid. Thirst is the sensation which drives to seek and consume water, regulated in the central nervous system by both neural and chemical signals. Water and electrolyte homeostasis depends on finely tuned physiological mechanisms, mainly susceptible to plasma Na+ concentration and osmotic pressure, but also to blood volume and arterial pressure. Increases of osmotic pressure as slight as 1-2% are enough to induce thirst ("homeostatic" or cellular), by activation of specialized osmoreceptors in the circumventricular organs, outside the blood-brain barrier. Presystemic anticipatory signals (by oropharyngeal or gastrointestinal receptors) inhibit thirst when fluids are ingested, or stimulate thirst associated with food intake. Hypovolemia, arterial hypotension, Angiotensin II stimulate thirst ("hypovolemic thirst", "extracellular dehydration"). Hypervolemia, hypertension, Atrial Natriuretic Peptide inhibit thirst. Circadian rhythms of thirst are also detectable, driven by suprachiasmatic nucleus in the hypothalamus. Such homeostasis and other fundamental physiological functions (cardiocircolatory, thermoregulation, food intake) are highly interdependent.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/470117
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact