Simple Summary The microbial community that inhabits specific areas of the body, developing a symbiotic relationship with the host, is termed the microbiota. The intestinal microbiota plays a pivotal role in different physiological processes and is influenced by many factors, including nutrition. Goji berries are a popular nutraceutical product that have been proposed as a dietary supplement in some livestock species, including rabbits, but their effects on the composition of the microbiota have never been investigated. This study evaluated the effects of Goji berry supplementation on the microbiota of different digestive tracts (stomach, duodenum, jejunum, ileum, caecum and colon) of the rabbit, using a modern method of analysis. Our results suggest that Goji berries could modulate the microbiota of the rabbit's digestive tract increasing the growth of beneficial bacteria, such as Ruminococcaceae, Lachnospiraceae, Lactobacillaceae, and particularly, the genus Lactobacillus. These findings suggest that Goji berries could be used to produce innovative feeds for rabbits, although further studies are necessary to evaluate their impact on productive performance, gut immune system maturation, as well as resistance to gastrointestinal disorders. Goji berries show health benefits, although the possible mechanisms of action, including compositional changes in the gut microbiome, are still not fully understood. The aim of this study was to evaluate the effect of Goji berry supplementation on microbiota composition and metabolites in the digestive tracts of rabbits. Twenty-eight New Zealand White rabbits were fed with a commercial feed (control group, C; n = 14) or the same diet supplemented with 3% of Goji berries (Goji group, G; n = 14), from weaning (35 days old) until slaughter (90 days old). At slaughter, samples from the content of the gastrointestinal tracts were collected and analyzed by Next Generation 16S rRNA Gene Sequencing to evaluate the microbial composition. Ammonia and lactic acid were also quantified in caecum. Results showed differences in microbiota composition between the groups for two phyla (Cyanobacteria and Euryarchaeota), two classes (Methanobacteria and Bacilli), five orders, fourteen families, and forty-five genera. Ruminococcaceae (p < 0.05) and Lachnospiraceae (p < 0.01) were more abundant in G than in C group. Lactobacillaceae also showed differences between the two groups, with Lactobacillus as the predominant genus (p = 0.002). Finally, Goji berry supplementation stimulated lactic acid fermentation (p < 0.05). Thus, Goji berry supplementation could modulate gastrointestinal microbiota composition and caecal fermentation.

Dietary Supplementation with Goji Berries (Lycium barbarum) Modulates the Microbiota of Digestive Tract and Caecal Metabolites in Rabbits

Menchetti, Laura
;
Barbato, Olimpia;Brecchia, Gabriele
2022-01-01

Abstract

Simple Summary The microbial community that inhabits specific areas of the body, developing a symbiotic relationship with the host, is termed the microbiota. The intestinal microbiota plays a pivotal role in different physiological processes and is influenced by many factors, including nutrition. Goji berries are a popular nutraceutical product that have been proposed as a dietary supplement in some livestock species, including rabbits, but their effects on the composition of the microbiota have never been investigated. This study evaluated the effects of Goji berry supplementation on the microbiota of different digestive tracts (stomach, duodenum, jejunum, ileum, caecum and colon) of the rabbit, using a modern method of analysis. Our results suggest that Goji berries could modulate the microbiota of the rabbit's digestive tract increasing the growth of beneficial bacteria, such as Ruminococcaceae, Lachnospiraceae, Lactobacillaceae, and particularly, the genus Lactobacillus. These findings suggest that Goji berries could be used to produce innovative feeds for rabbits, although further studies are necessary to evaluate their impact on productive performance, gut immune system maturation, as well as resistance to gastrointestinal disorders. Goji berries show health benefits, although the possible mechanisms of action, including compositional changes in the gut microbiome, are still not fully understood. The aim of this study was to evaluate the effect of Goji berry supplementation on microbiota composition and metabolites in the digestive tracts of rabbits. Twenty-eight New Zealand White rabbits were fed with a commercial feed (control group, C; n = 14) or the same diet supplemented with 3% of Goji berries (Goji group, G; n = 14), from weaning (35 days old) until slaughter (90 days old). At slaughter, samples from the content of the gastrointestinal tracts were collected and analyzed by Next Generation 16S rRNA Gene Sequencing to evaluate the microbial composition. Ammonia and lactic acid were also quantified in caecum. Results showed differences in microbiota composition between the groups for two phyla (Cyanobacteria and Euryarchaeota), two classes (Methanobacteria and Bacilli), five orders, fourteen families, and forty-five genera. Ruminococcaceae (p < 0.05) and Lachnospiraceae (p < 0.01) were more abundant in G than in C group. Lactobacillaceae also showed differences between the two groups, with Lactobacillus as the predominant genus (p = 0.002). Finally, Goji berry supplementation stimulated lactic acid fermentation (p < 0.05). Thus, Goji berry supplementation could modulate gastrointestinal microbiota composition and caecal fermentation.
2022
File in questo prodotto:
File Dimensione Formato  
Cremonesii 2022_Dietary Supplementation with Goji Berries (Lycium barbarum).pdf

accesso aperto

Tipologia: Versione Editoriale
Licenza: PUBBLICO - Creative Commons
Dimensione 3.66 MB
Formato Adobe PDF
3.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/468735
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact