It is well known that, if the initial conditions have sufficiently high energy density, the dynamics of the classical Discrete Non-Linear Schrodinger Equation (DNLSE) on a lattice shows a form of breaking of ergodicity, with a finite fraction of the total charge accumulating on a few sites and residing there for times that diverge quickly in the thermodynamic limit. In this paper we show that this kind of localization can be attributed to some geometric properties of the microcanonical potential energy surface, and that it can be associated to a phase transition in the lowest eigenvalue of the Laplacian on said surface. We also show that the approximation of considering the phase space motion on the potential energy surface only, with effective decoupling of the potential and kinetic partition functions, is justified in the large connectivity limit, or fully connected model. In this model we further observe a synchronization transition, with a synchronized phase at low temperatures.

Localization in the Discrete Non-linear Schrodinger Equation and Geometric Properties of the Microcanonical Surface

Piergallini, R;
2022-01-01

Abstract

It is well known that, if the initial conditions have sufficiently high energy density, the dynamics of the classical Discrete Non-Linear Schrodinger Equation (DNLSE) on a lattice shows a form of breaking of ergodicity, with a finite fraction of the total charge accumulating on a few sites and residing there for times that diverge quickly in the thermodynamic limit. In this paper we show that this kind of localization can be attributed to some geometric properties of the microcanonical potential energy surface, and that it can be associated to a phase transition in the lowest eigenvalue of the Laplacian on said surface. We also show that the approximation of considering the phase space motion on the potential energy surface only, with effective decoupling of the potential and kinetic partition functions, is justified in the large connectivity limit, or fully connected model. In this model we further observe a synchronization transition, with a synchronized phase at low temperatures.
2022
File in questo prodotto:
File Dimensione Formato  
2102.10298.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 2.71 MB
Formato Adobe PDF
2.71 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/467561
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact