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Abstract It is well known that, if the initial conditions have sufficiently high energy density, the
dynamics of the classical Discrete Non-Linear Schrödinger Equation (DNLSE) on a lattice shows a
form of breaking of ergodicity, with a finite fraction of the total charge accumulating on a few sites
and residing there for times that diverge quickly in the thermodynamic limit. In this paper we show
that this kind of localization can be attributed to some geometric properties of the microcanonical
potential energy surface, and that it can be associated to a phase transition in the lowest eigenvalue
of the Laplacian on said surface. We also show that the approximation of considering the phase space
motion on the potential energy surface only, with effective decoupling of the potential and kinetic
partition functions, is justified in the large connectivity limit, or fully connected model. In this model
we further observe a synchronization transition, with a synchronized phase at low temperatures.

1 Introduction

In recent years the interest in non-ergodic states of matter has grown considerably, in particular,
but not only, following recent theoretical and experimental developments in the study and control
of many-body quantum systems. The discovery of Many-Body Localization (MBL) [1,2,3,4,5,6,7]
has extended the phenomenon of Anderson Localization [8] to interacting systems and suggested the
emergence of a dynamical phase characterized by local integrals of motion [9,10,11,12,13,14] in dis-
ordered quantum systems. These studies have shown a potential big impact on quantum technologies,
in the realm of mesoscopic quantum systems. Further extensions of the original idea have put forward
the possibility that MBL-like physics could be observed in Josephson junctions chains [15,16], when
the initial state presents sufficiently large charge fluctuations, playing the role of quenched disorder
in an otherwise clean system. Slow dynamics in such clean quantum systems (see also the works on
quantum scars [17]), appears in a form similar to the weak ergodicity breaking characterizing spin glasses
[18,19,20,21,22], configurational glasses [23,24,25], and, in particular, non-linear oscillators models
as the Fermi-Pasta-Ulam-Tsingou model [26,27,28] and the Discrete Non-Linear Schrödinger Equation

(DNLSE) [29]. The latter describes, among other things, the physics of Bose-Einstein condensates in
optical lattices (in the semiclassical regime). In some experiments [30,31] it has been observed that,
in a one-dimensional lattice, Rubidium atoms survive very close to the initially prepared, localized
configurations. Additionally, in numerical simulations one observes very long-lived breather-like exci-
tations [32,33,34,35,36,37,38], self-localization [39,40,41] and, in general, weak ergodicity breaking
[42,43,44].

An explanation for these behaviors has been proposed, which is based on the inequivalence of the
microcanonical and canonical Gibbs ensemble at high energy density [45,46,47,48]. We show, building
on those papers, that in the limit of large connectivity even a diffusive dynamics on the microcanonical
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surface takes a time exponentially long in the system size, for the system to equilibrate. The limit of
large connectivity, or mean-field limit, is known to be a very good approximation in many statistical
mechanics problems, and it is (in the description of phases and transition between them) exact

above a certain critical dimension. We therefore believe that our results qualitatively describe the
experimentally relevant situation of up to three-dimensional lattices.

Another reason for our interest were the similarities between the quantum MBL phenomenon and
the classical ergodicity breaking phenomena in the DNLSE. Hence, we have set to investigate the
origins of the latter, in particular to highlight similarities and differences. We stress again that we
will focus on clean systems with ~ ≡ 0. MBL cannot survive in the semiclassical limit, as Anderson
localization itself cannot; so the origin of the phenomena are definitely not the same. For the DNLSE,
the interplay between disorder, quantum-mechanical localization and nonlinear effects has been the
subject of vast research (see e.g. [49,50,51] and references therein), but we stress that the physics
behind it is appreciably different from the one discussed here.

As recognized in previous works, and in particular in [45,46,47,48], the localization phenomenon
at high energy density is due to entropic effects. As the main results of this study, we find first,
that the equilibration time at high energy density is exponential in N , second that this is not due to
a breakdown of connectivity of the topology of the microcanonic surface, where only the potential
energy is taken into account, but third, that the origin of the localization phenomenon at high energy
density can be traced to the behaviour of the gap of the Laplace operator on the (N −2)-dimensional
microcanonical energy manifold. In order to prove this we proceed with the following steps.

The first issue is about the possibility to neglect the term in the Hamiltonian containing phase
variables (which allows the exchange of charges between different sites) when studying the micro-
canonical surface, a customary step in the literature. This is a fundamental point, since the partition
function does not factorize in a form Z = ZmomentumZposition , as it happens for example when look-
ing at gases or liquids, where typically the phase-space variables (p, x) appear each in its own term:
H(p, x) = K(p) +V (x). We therefore show that expansion around infinite temperature of the free en-
ergy (and, consequently, of all relevant observables) gets contributions from the kinetic term only at
O(1/κ), where κ is the connectivity of the graph on which the DNLSE is considered (see Eqs. (1)–(3)
to fix the notation). Therefore, if one considers a fully connected model, the assumption of neglecting
the kinetic term is completely justified. As said before, in the spirit of mean-field theory, this is a
first approximation to the physics of finite connectivity lattices.

We solve the fully connected model finding that the “infinite temperature phase”, in which the
free energy becomes essentially given by the potential term alone, extends all the way down to a
finite temperature Ts = 2g (g is the strength of the kinetic term and v that of the potential). At
temperatures lower than Ts, or equivalently energy densities ε < εs = 1.481 . . . (with the parameters
g = 1, v = 2 used throughout this paper), the model enters a synchronized phase in which the phases
φi (see Eqs. (2) and (3)) stop rotating independently from each other and eventually move together at
T = 0 (energy density εGS = v/2−2g = −1). Conversely, for temperatures higher than Ts the motion
of the phases φi is incoherent and the charges move randomly on the microcanonical, potential energy
surface.

Subsequently, after having highlighted the importance of the potential energy surface, we study the
topology of such manifold. We prove, using both stratified Morse theory and a more direct geometrical
approach, that the manifold undergoes a series of critical points (critical in the language of Morse
theory, not of statistical physics) but it remains connected until energy densities ε = vN/4 = N/2,
which means super-extensive energy. The infinite-temperature localization phase transition (previously
studied in [45,52,32,33,34,35,53,36,37,40,43]), taking place at energy density εc = v = 2, therefore,
is not due to a breakdown of connectivity in such manifold. Rather, we attribute it to the change
in the scaling with N of the smallest, non-zero eigenvalue λ1 of (minus) the Laplace operator on
the microcanonical surface (the smallest eigenvalue λ0 = 0 corresponds to the uniform distribution
on the manifold). Namely, for ε < εc = 2 (the numerics agrees with the thermodynamic calculation
within errors) we have λ1 = O(1), while for ε > εc we have λ1 ∼ e−γN . The function γ(ε) ≥ 0 and
vanishes as ε→ ε+c with critical exponent close to 2.

We conjecture that this transition is related to an entropic effect for the motion of a particle on
the microcanonical energy surface. In other words, the volume of the regions of phase space close
to an imbalanced configuration (i.e. when a few charges are considerably larger than the others)
becomes bigger, at energies ε > εc, than the volume of balanced configurations. We suggest that
this mechanism, and the link with the behaviour of the smallest eigenvalue of the Laplacian on the
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εc = 2εs =1.481…εGS = − 1

Fig. 1 Phase diagram of the fully connected DNLS model for v = 2 and g = 1. The region ε > εc corresponds to
non-positive temperatures and localized dynamics; the region εs < ε < εc to ergodic incoherent dynamics for the
phases φi (Eq. (2)); the region ε < εs to coherent dynamics for the same phases.

microcanonical surface, is generic for DNLSE with different choices of graphs and potentials (as also
indicated by the results of [52,53]).

The paper is organized as follows. In Sec. 2 we introduce the DNLS model and briefly review
some known results. In Sec. 3 we set up an high-temperature expansion and show that, for any
dimensionality, the infinite temperature point corresponds always to εc = v = 2. In Sec. 4 we perform
instead an expansion in the kinetic term of the Hamiltonian, and prove that, for large connectivity,
hopping can be completely neglected in a finite neighbourhood of ε = εc. In Sec. 5 we inspect more
closely the reasons why hopping is sub-leading, finding out that there is a synchronization phase
transition in the fully connected model at εs = 1.481 . . . . We discuss in detail the implications of
such phase transition. In Sec. 6 we describe (almost) rigorously the topology of the potential energy
surface, leaving to App. A the flawless, yet less insightful proof. Also, we provide some intuitive
explanation of the connection of the geometry with the behavior of the gap of the Laplacian. In Sec.
7 we switch to the numerical study of the dynamics of the model: we provide strong evidence that at
ε = 2 also a dynamical phase transition takes place, thus implying that the gap of the Laplacian on
the potential energy surface closes as described above. Finally, in Sec. 8 we discuss the implications
of our findings and speculate on future directions.

2 The model

In this work, we want to show that the mechanism of ergodicity breaking at high energy density
for the DNLSE is very general, and depends only on the particular form of the potential energy and
charge conservation laws. For this reason, we consider the DNLS model on an arbitrary, regular graph
G:

H = − g
κ

N∑

i,j=1

Aij
(
ψ∗i ψj + ψ∗jψi

)
+
v

2

N∑

i=1

|ψi|4. (1)

Here, the ψi, ψ
∗
i are complex fields that live on the vertices i of G, and are canonically conjugated:

their Poisson brackets read {ψ∗i , ψj} = iδij . Then, g,v are non-negative parameters, which we will
eventually set to g = 1 and v = 2; for the time being, however, it is convenient to allow them to
vary. Finally, κ is the connectivity of G and A its adjacency matrix, so each entry Aij is either 0 (ij
disconnected) or 1 (ij connected). Notice that, thanks to the 1/κ normalization of the kinetic term,
H = O(N) for any G, even in the limit of fully connected graph κ ∼ N → ∞, without having to
rescale g.

Apart from the energy, there is another natural conservation law to take into account: defining
the charge Q :=

∑
i |ψi|

2, it holds {Q,H} = 0. Without loss of generality, we choose to work with
Q ≡ N fixed from now on (or, more generally, with the average charge fixed).

We define the energy density ε := H/N . Previous works [45,46,47] have shown that ε = εc = v

corresponds to the T = ∞ limit of the model on a 1d chain when coupled to a thermal reservoir
at temperature T , and that at εc the Gibbs distribution ceases to be valid: the states with energy
density ε > εc remain well-defined only in the microcanonical ensemble. Moreover, other works have
shown that the dynamics of a chain ceases to be ergodic in this non-Gibbs phase, with the charges
localizing on isolated sites in solitons rather than moving around. This has been seen both by using a
simplified stochastic evolution algorithm, for all ε ≥ εc [36,37], and with Hamiltonian dynamics [42]
(although in this latter work the threshold is put at ε ' 1.25 v).
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It is important to note, however, that in the proof of the canonical/microcanonical inequivalence
[46,47] the kinetic term plays no role so, in particular, no role is played by the geometry of the
lattice (or graph) on which the DNLSE is set. One wonders then whether the same happens at any
finite temperature and finite dimensional lattice, that is to say in a left neighbourhood of ε = εc and
κ→∞. We will prove that it does, at least working at order 1/κ.

3 Infinite temperature limit

We now start exploring the limit T →∞. We start with computing the canonical partition function
of the Hamiltonian (1) which, assuming ergodicity, should tell us about the behavior of the system
for ε ≤ 2. For later convenience, we employ a dimensionless chemical potential µ:

Z(N, β, µ) =

∫
[dψ dψ∗]e−βH+µQ,

where [dψ dψ∗] :=
∏
i

1
2π dψi dψ

∗
i and β := 1/T (fixing kB ≡ 1). First of all, we perform the canonical

change of variables {
ψi =

√
qi e

iφi

ψ∗i =
√
qi e
−iφi (2)

with qi ≥ 0 and φi ∈ [0, 2π]. The measure becomes [dψ dψ∗] =
∏N
i=1

1
2π dqi dφi =: [dq dφ], the charge

Q =
∑N
i=1 qi and the Hamiltonian

H = −2g

κ

N∑

i,j=1

Aij
√
qiqj cos(φi − φj) +

v

2

N∑

i=1

q2i . (3)

Let us denote the thermal average of an observable A as

〈A〉β,µ :=
1

Z

∫
[dq dφ] e−βH+µQA.

Then one can inspect the infinite temperature limit, β → 0, by considering the expansion

〈A〉β,µ = 〈A〉0,µ − β
[
〈AH〉0,µ − 〈A〉0,µ〈H〉0,µ

]
+O(β2). (4)

The first thing to do is to adjust the chemical potential to have a fixed average charge (recall our
choice in Sec. 2):

N ≡ 〈Q〉β,µ ' 〈Q〉0,µ − β
[
〈QH〉0,µ − 〈Q〉0,µ〈H〉0,µ

]

' N〈q〉0,µ − β
[
v

2

(
N〈q3〉0,µ +N(N − 1)〈q〉0,µ〈q2〉0,µ

)
−N〈q〉0,µ

v

2
N〈q2〉0,µ

]

' −N
µ

+ β
2Nv

µ3

so that µ ' −1 + 2βv. In the computation we have used the fact that the averages involving the
kinetic energy vanish by symmetry, and 〈qk〉0,µ = k!/(−µ)k.

Now we focus on the internal energy. We already have found 〈H〉0,µ = Nv/µ2; thus we just need
〈H2〉0,µ. The only non-zero angular integrals that figure in 〈H2〉0,µ are

∫
[dφ] cos(φi − φj) cos(φk − φl) =

1

2
(δikδjl + δilδjk);

therefore we find

〈H2〉0,µ =
4g2

κ2
Nκ〈q〉20,µ +

v2

4

[
N〈q4〉0,µ +N(N − 1)〈q2〉20,µ

]

where we recall κ is the connectivity of the graph. The final result is

ε(β) = v − β
(
v2 +

4g2

κ

)
+O(β2) (5)

From this expression we see that the result of the non-interacting case ε(β = 0) = v is not modified
by the presence of the hopping on any graph geometry. We notice also that the kinetic energy term
(measured by g) contributes only with O(g2/κ) and therefore vanishes to this order in the mean-field,
fully connected limit κ→∞. We explore such limit in the next section.
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Fig. 2 Allowed diagrams Λ ∈ D` in the expansion (7) up to order ` = 4. Including counting factors, they evaluate
(from left to right) to Nκ/2, Nκ(κ − 1)/3, Nκ(κ − 1)(κ − 2)/4, Nκ(κ − 1)/3, and Nκ/8. Circled in red are the
one-loop, connected diagrams of which there are one per each order `: these contribute to lowest order in 1/κ. Notice
also that there is no watermelon diagram at O((g/κ)3) because of point (2) in the text.

4 Large connectivity limit

As noted at the end of the last section, in Eq. (5) the O(β) correction to the internal energy density
becomes independent of g in the limit of large connectivity κ → ∞. Indeed, one can verify that all

the terms in the expansion involving the hopping are subleading in κ. The situation is reminiscent
of the Thouless-Anderson-Palmer (TAP) high temperature expansion of the Sherrington-Kirkpatrick
model [54]. Alongside with TAP, we can expand the free energy density f := − log(Z)/βN in powers
of 1/κ:

f = f0 +
1

κ
f1 +O

(
1

κ2

)
, (6)

where f0 is the free energy density at κ→∞, or g = 0, while we can express f1 (and successive orders
too) as a sum of diagrams.

To see it, start by expanding in powers of g the full free energy density:

−βfN = log

∫
[dq dφ]e−βH0+µQ

∞∑

k=0

1

k!

[
2gβ

κ

∑

ij

Aij
√
qiqj cos(φi − φj)

]k

=: −βf0N +
∞∑

`=1

(
2gβ

κ

)` ∑

Λ∈D`

Λ (7)

where consistently we denote by a “0” subscript quantities that are evaluated at g = 0. Equation (7)
is our definition of the diagrams Λ ∈ D`, that we also show graphically in Fig. 2. More precisely, at
each order ` of the effective coupling constant g/κ we have averages

∫
[dφ] cos(φi1 − φi2) cos(φi3 − φi4) · · · cos(φi2`−1

− φi2`)
N∏

j=1

〈qnj/2〉0,

where nj is the multiplicity with which index j appears in the string i1i2 · · · i2`. We notice that

1. since we are expanding a logarithm, by the linked-cluster theorem each diagram Λ ∈ D` must
consist of one connected piece only;

2. for the angular integration not to yield 0, each φi must appear an even number of times; in
particular this means that all the diagrams in D` must be closed and each vertex must have an
even number of legs (see Fig. 2);

3. the permutation symmetry of the couples i2pi2p+1 yields a factor `!/SΛ, where SΛ is the symmetry
factor of the diagram Λ. Therefore, according to the usual arguments this cancels the 1/`! in the
expansion of the exponential, leaving the symmetry factor in the denominator;

4. the permutation symmetry within each couple i2pi2p+1 of the two indices yields a factor 2 for
each pair, and so a factor 2` in total;

5. the angular integration for simple loops evaluates to 21−`, while multiple loops give a result
depending on the geometry (e.g. in Fig. 2 the first three diagrams are simple loops and receive
respectively a factor 1/2, 1/4 and 1/8, while the fourth receives a factor 1/4 and the last a factor
3/8).
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By using the previous rules, and having a look at Fig. 2, one can get convinced that at fixed order
` the simple loops (e.g. the diagrams circled in red in Fig. 2) are the least suppressed by κ. Indeed,
since they are composed by the maximum number of distinct points, the factor κ` in the denominator
of Eq. (7) is compensated by the ∼ Nκ`−1 possible choices of the points. Having noted this feature,
we can explicitly compute f1: the angular integration yields a factor 21−` (as noted in point (5)
before), the symmetry factors are SΛ = 2`, and only the averages 〈q1〉0 = 1 appear. Therefore one
has

−βf1 =
κ

N

∞∑

`=2

(
2gβ

κ

)`
Nκ`−1 1

2`
2`

1

2`−1
= −2gβ − log(1− 2gβ), (8)

with the sum starting from ` = 2 because there is no diagram at order 1.
At this point, we can give a physical interpretation to Eqs. (6)–(8). In the large connectivity limit

κ→∞, the extensive contribution to the free energy is always regular and independent of the hopping
between different sites. Moreover, as long as β < βs := (2g)−1, the sub-extensive contribution f1 can
be forgotten, while at β = βs it diverges and there is a phase transition: interactions must be taken
into account and to go beyond one needs to address the problem non-perturbatively.

5 Solution of the fully-connected model

To go beyond perturbation theory, we can compute the partition function of the fully-connected
model κ = N − 1 using saddle-point methods. Dropping sub-leading terms in N , we have

ZMF (N, β, µ) =

∫
[dq dφ] exp

{
− βv

2

∑

i

q2i + µ
∑

i

qi +
2βg

N

(∑

i

√
qie

iφi
)(∑

i

√
qie
−iφi

)}
. (9)

We expand

(∑

i

√
qie

iφi
)(∑

i

√
qie
−iφi

)
=
(∑

i

√
qi cosφi

)2
+
(∑

i

√
qi sinφi

)2
,

so that we can perform a Hubbard-Stratonovich transformation:

ZMF (N, β, µ) =
N

2π

∫
[dq dφ]

∫
dy1dy2 exp

{
− βv

2

∑

i

q2i −
N

2
(y21 + y22) + µ

∑

i

qi

+ 2
√
βg y1

∑

i

√
qi cosφi + 2

√
βg y2

∑

i

√
qi sinφi

}
.

Now all the q,φ integrals are factorized, and the basics constituents are of the form

1

2π

∫
dq dφ exp

[
− βvq2/2 + µq +

√
βgq (y−e

iφ + y+e
−iφ)

]

with y± = y1 ± iy2. We can perform first the angular part:

1

2π

∫ 2π

0

dφ ez(y−e
iφ+y+e

−iφ) =
1

2π

∫ 2π

0

dφ
∑

k≥0

zkyk−
k!

eikφ
∑

`≥0

z`y`+
`!

e−i`φ

=
∑

k≥0

(z2y+y−)k

(k!)2
= I0(2z

√
y+y−),

I0 being the modified Bessel function of the first kind. Thus, defining

J(β, µ, Y ) :=

∫ ∞

0

dq e−βvq
2/2+µqI0

(
2
√
βgqY

)
(10)

with Y := y+y− = y21 + y22 , we arrive at

ZMF (N, β, µ) = N

∫ ∞

0

dY e−NY/2+N log J(β,µ,Y ). (11)
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Fig. 3 Plot of the free energy density f(β, µ, Y ) + µ/β, with g = 1, v = 2, and µ fixed so that 〈Q〉 = N . The red
dot is the solution of Eq. (13), i.e. the extremal point. It moves from the bulk of the allowed region Y > 0 at low
temperature (panel (a)), to the boundary Y = 0 at high temperature (panel (b)).

When performing this integral in the N → ∞ limit, if the saddle point is within the domain of
integration Y ≥ 0, one can use the saddle point method, otherwise one needs to integrate by parts
around the lower limit of integration Y = 0 (see Fig. 3). In any case, the free energy density is

f(β, µ, Y ) = β−1(Y/2− log J), (12)

where Y solves the saddle-point equation (with the above proviso)

1

2
=

1

J

∂J

∂Y
. (13)

It also is convenient to trade µ for the (average) total charge 〈Q〉 = N :

1 =
1

J

∂J

∂µ
. (14)

Equations (13)–(14) can be easily solved numerically by iteration for any desired β.

Another way of rewriting Eqs. (13)–(14) is by interpreting J(β, µ, Y ), defined in Eq. (10), as a
partition function for the variable q, which thus acquires the probability density

p(q) =
1

J
e−βvq

2/2+µqI0
(
2
√
βgqY

)
. (15)

Then, the two equations (13)–(14) take (respectively) the form
√

Y

4βg
=

〈
√
q
I1(2
√
βgqY )

I0(2
√
βgqY )

〉

p

(16)

1 = 〈q〉p . (17)

These last expressions are convenient to control the limits β →∞ and β → 0. Indeed, as β →∞
the problem simplifies and the probability concentrates around the saddle point q = 1 (Eq. (17)).
One can also expand the Bessel functions (as long as, self-consistently, Y � 1/β) for large arguments,
and substituting q = 1 in Eq. (16) gives

√
Y

4βg
= 〈√q(1 + · · · )〉p =⇒ Y = 4gβ +O(β0). (18)

Also, imposing Eq. (17) explicitly on Eq. (15), one gets

µ = β(v − 2g) +O(β0). (19)

For small β, instead, one can expand the Bessel functions for small argument (as long as this
returns self-consistently βY � 1), and obtain

√
Y

4βg
=

〈
√
q

[
(βgqY )1/2 − 1

2
(βgqY )3/2 + · · ·

]〉

p

= (βgY )1/2〈q〉p −
1

2
(βgY )3/2〈q2〉p + · · · .
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Fig. 4 Saddle-point value of Y found upon solving Eqs. (13)–(14) by iteration, with g = 1 and v = 2 (black solid
line). For β < (2g)−1 = 0.5 the correct solution is Y1, while at larger values of β it becomes Y2 (see Eq. (20)). For
comparison, we show the approximate solutions at β → ∞ and βY → 0 as dashed lines. Note that the β → ∞
approximation, to the order obtained in Eqs. (18)–(19), still needs a O(β0) term to be fixed. Inset: Corresponding
values found for µ.

There are two solutions:

Y1 = 0, Y2 =
2βg − 1

(βg)2〈q2〉p
. (20)

The second solution is negative for β < βs = (2g)−1, so in this region one must stick with Y1 (since the
Y integral in Eq. (11) is on the positive domain). As β & βs, instead, Y2 becomes the correct solution,
until the condition βY � 1 is no more valid and the approximation breaks down. In Fig. 4 we show
the comparison of the numerically exact solutions with the small-β and large-β approximations.

To connect with the diagrammatic expansion done in Sec. 4, we notice that the critical value
βs = (2g)−1 is the same given by the radius of convergence of perturbation theory for f1, the sub-
extensive contribution to the free energy. We are now in position to give an interpretation to the
phase transition taking place at Ts = 1/βs: it is the temperature below which the angles φi no more
average to zero, but start acquiring a common orientation. Indeed, on one hand

−g ∂
∂g

(βf) = β
2g

N2

∑

i 6=j

〈√
qiqj cos(φi − φj)

〉
;

on the other hand, by differentiating the saddle-point free energy,

−g ∂
∂g

(βf) = g
1

J

∂J

∂g
= Y

1

J

∂J

∂Y
=
Y

2
.

The comparison of the last two equations implies

Y =
4βg

N2

∑

i 6=j

〈√
qiqj cos(φi − φj)

〉
. (21)

We conclude that, as β → ∞, the angles must all point in the same direction (albeit the latter can
change in time). Indeed, recalling that q concentrates around 1, in order to find the asymptotic, low
temperature behaviour Y ' 4βg one needs that all the phases align: 〈cos(φi − φj)〉 → 1, so φi → φ0
for all i = 1, 2, . . . , N . This is the statistical mechanics signature of a synchronized phase [55,56],
in which all fields have a common phase and the fluctuations of the amplitudes are negligible. The
synchronization phase transition is second-order, with the order parameter Y growing linearly close
to βs = (2g)−1.

We can also express the above observations in terms of the energy density ε. At T = 0 the system
is in the ground state, with energy density εGS = v/2 − 2g: this readily follows from our β → ∞
expansion of the free energy. At the synchronization transition T = Ts = 2g, instead, the energy
density can be found numerically by imposing Y = 0 and fixing µ from Eq. (14): for g = 1 and v = 2
we find εs = 1.481 . . . (see also Fig. 1).

Finally, we can identify the order parameter Y with the average interaction energy density (see
Eq. (21)), which vanishes at temperatures T > Ts.
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Fig. 5 Two different views of the same stereographic projection of the manifold Mε (Eq. (22)), for N = 5 and
ε = 2. While this projection respects the topology of the manifold, clearly its metric structure is altered. Colors
depend on the distance from the vertices of ∆N−1, varying from blue for the five 0-handles around those vertices
to green for the median sections of the ten 1-handles.

6 Topological structure of the potential energy surface

We now start focusing on the region ε ≥ εc = v. Having completely lost the spatial structure given by
the hopping for any graph geometry, the model has become effectively non-interacting. For this reason,
we can also fix v ≡ 2 wlog. from now on.

The microcanonical surface is non-trivial, because of the presence of two conservation laws: energy
(H = Nε) and charge (Q = N). For large energy density, the bulk of the volume of the microcanonical
surface is concentrated in the region where a few charges get a large share of the total charge
(the participation ratio is O(1) [46,47]). These are localized charge configurations. However, these
configurations are not isolated from each other, and a continuous charge rearrangement can move
any localized lump anywhere else in space, passing through regions of equally distributed charges. In
this section we show that this can be done by moving continuously on the microcanonic surface for
any ε = O(1).

Let us summarize here what is proven as a theorem in this Section: The microcanonical surface

remains a connected manifold for all the energy densities ε < N/2 (extensive energy density), in particular

through the dynamical transition observed numerically at εc = 2, which then cannot be addressed to a

deficiency in connectivity. Moreover, we show that, as ε increases, the surface passes a series of critical
points, according to stratified Morse theory. At the dynamical transition εc = 2, the number of transverse

dimensions of the pipe connecting two regions corresponding to localized charges equals the number of

longitudinal dimensions. What this topological proof cannot tell us is how the equilibration time
depends on N . That is a property of the dynamics, which we can only conjecture is due to the shape
of the pipes linking the “fat” regions of localized charge, and it is presented at the end of this Section
as a Problem.

In order to prove these two results we will introduce now the manifold and some relevant results
of Morse theory. We again change variables from the ψi’s to the local charges qi = |ψi|2 (see also
Eq. (2)), that are the only combinations of the ψi’s entering in the conservation laws. Thus, we are
left with the equations





1
N

∑N
i=1 qi = 1

1
N

∑N
i=1 q

2
i = ε

qi ≥ 0 ∀i = 1, 2, . . . , N.

(22)

These equations define a (N −2)-dimensional manifold with boundary and cornersMε (see Fig. 5 for
a visual impression of the case N = 5), naturally embedded in RN , whose central role was recognized
already in [57]. The topology of this manifold undergoes a series of changes as ε varies, which can be
outlined by stratified Morse theory in the following way (see App. A for a more detailed description).

The first and the last equation in (22) represent the affine simplex ∆N−1 ⊂ RN spanned by the
vectors Ne1, . . . , NeN , where e1, . . . , eN is the canonical base of RN . Hence, Mε is non-empty for
1 ≤ ε ≤ N . Moreover, Mε is a small (N − 2)-sphere around the barycenter of ∆N when ε approaches
1, while it is the disjoint union of N small (N − 2)-disks, each near to a vertex of ∆N−1, when ε

approaches N .
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ε = N/2 − δ ε = N/2 ε = N/2 + δ

p0

Fig. 6 The last critical point, at which the microcanonic manifold splits intoN disconnected pieces each representing
a different set of localized configurations, close to each of the vertices of ∆N−1. The figure concerns the case N = 4.
Everything is depicted in the (N−1)-dimensional affine subspace AN−1 given by the first equation in (22). In yellow

Mε ⊂ SN−2
ε and in red the suplevel set Mε(ϕ) ⊂ Bd∆N−1.

In order to see what happens for the intermediate values of ε, think of the boundary ∂∆N−1 as a
stratified space, whose strata are its open sub-simplices of ∆N−1, and observe that ϕ : ∂ ∆N−1 → R
given by ϕ(q) = ‖q‖2/N is a stratified Morse function, meaning that it restricts to a Morse function
on every stratum. Then, for every 1 < ε < N , the radial projection from the barycenter of ∆N−1,
that is the vector e1 + · · ·+ eN , induces a stratified diffeomorphism between Mε and the suplevel set
Mε(ϕ) = {q ∈ ∂∆N−1 | ϕ(q) ≥ ε} ⊂ ∂∆N−1, according to the second equation in (22).

Morse theory tells us that the topology of Mε
∼= Mε(ϕ) changes only at the critical values of the

restrictions of ϕ to the strata of ∂∆N−1. Such critical values have the form N/k with 1 < k < N .
Indeed, for each k we have (Nk ) corresponding non-degenerate critical points of index N−k−1 located

at the barycenters of the (k−1)-dimensional faces of ∆N−1. This implies that for δ > 0 small enough
MN/k− δ(ϕ) can be obtained by attaching (Nk ) narrow (k− 1)-handles to MN/k+ δ(ϕ). Each of these

(k−1)-handles is an (N−2)-cell CN−2 which is the product of a (k−1)-cell Ck−1 = Cl(Σ−MN/k+ δ(ϕ))
(where Cl stands for the closure operator) for a (k − 1)-dimensional face Σ of ∆N−1 and a small
(N − k − 1)-cell CN−k−1 such that CN−2 ∩MN/k+ δ(ϕ) = ∂ Ck−1 × CN−k−1.

As a consequence, for every k = 1, . . . , N − 1 and N/(k + 1) < ε < N/k the (N − 2)-manifold
Mε(ϕ) is a regular neighborhood, meaning an (N − 2)-dimensional thickening, of the (k− 1)-skeleton
of ∆N−1 in ∂∆N−1. In particular, recalling the homeomorphism Mε

∼= Mε(ϕ), we can conclude that
Mε has N connected components for N/2 < ε ≤ N , while it is connected for 1 ≤ ε ≤ N/2.

The above discussion shows that, for N > 4, at ε = 2 the manifold Mε has gone through a series
of gluing handles procedures described above, yet remaining connected. This raises the intriguing
problem of characterizing M2 also from a purely geometrical point of view. Of course the simplest
geometrical invariant of Mε is its volume. Since vol(M1) = vol(MN ) = 0, we know by continuity
that there exists ε0(N) ∈ (1, N) which maximizes vol(Mε). Recall that Boltzmann’s law entails
S(ε) = log(vol(Mε)), and also that it holds

1

T
=

1

N

dS

dε
.

At infinite temperature clearly dS
dε |ε=2 = 0. So, the stationary point for the microcanonical manifold

volume arises at ε = 2 (value that is correct only in the limit N →∞), as already argued before. This
classical observation has been significantly strengthened in [46,47] for the model under consideration,
where it is observed that ε = 2 is indeed limN→∞ ε0(N) and moreover ε0(N) = 2 + O(N−1/3). We
believe that a direct geometric analysis of the behaviour of vol(Mε) would be very interesting by
itself since it could shed light on various other aspects of the problem studied.

While we leave this task for future investigation, we now observe that thanks to the Morse-
theoretic description above, we can quantify the volume contribution of each handle attachment
through any critical value of ε = N/k, 1 < k < N . Indeed, given ε = N/k−δ and p0 a singular point in
MN/k, we can look at the projection Π from the barycenter B of the symplex of a neighborhood of p0

in the sphere SN−2 inside the (N − 1)-dimensional affine subspace AN−1 given by the first equation
in (22) onto the tangent space to this sphere (see Figs. 6 and 7).

As argued above, p0 is a non-degenerate critical point of index N−k−1 located at the barycenter of
a (k−1)-dimensional face∆k−1 of∆N−1 and hence we can choose coordinates (x1, . . . , xk−1, y1, . . . , yN−k−1)
on Tp0(SN−2) in such a way that x = (x1, . . . , xk−1) parametrize Π(∆k−1), and y = (y1, . . . , yN−k−1)
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Fig. 7 Image of the projection via Π on Tp0 (SN−2) of a neighborhood of a singular point p0 inMN/k. ΓWδ is the

profile of Π(MN/k−δ) in Tp0 (SN−2). In blue the handle attachment Yδ,r.

span its orthogonal complement. By intersecting Π(Mε) with a (N − 2)-cube Cr centered in the
origin of Tp0(SN−2) with faces parallel to the coordinate axis, we are led to estimate the rate change
of the local effect on the volume of the handle-attachment procedure (vol(Yδ,r) as shown in Fig. 7).
This can be done observing that such region is bounded by a function Wδ(|x|), which is at first order
quadratic in |x|, being the image via Π of the profile of the sphere, and s.t. Wδ(0) = δ1/2 + O(δ). It
is now a straightforward computation to see that

vol(Yδ,r) = C(N, k) rk−1δ(N−k−1)/2 + h.o. (23)

for some constant C(N, k). The above computation holds for any k = 2 . . . N − 1, and singles out
yet another peculiarity of the value ε = 2, corresponding to k = N/2 (for even values of N). In
fact, this is the only situation in which the contributions coming from the two factors of the handle
Ck−1 × CN−k−1 are of the same order.

Having established that nothing worth of notice in the topology of Mε occurs at ε = 2, we will
see in the next Section that a simple Brownian motion on Mε does change its behavior precisely
at ε = 2. The dynamics of the Brownian motion is notoriously linked to another natural geometric
invariant of Mε, namely its first non-zero eigenvalue of the Laplacian for the curved metric induced
on Mε (with Neumann boundary conditions).

We will then provide in the next Section strong evidence for the following intriguing (and hard)
geometric
Problem. Having set γ(ε) := − limN→∞

1
N log λ1, we have

{
γ = 0 ε ≤ 2

γ > 0 ε > 2.

Providing fine estimates for the first eigenvalue of the Laplacian is well known to be a subtle
(and important) problem in geometric analysis. The present situation seems particularly interesting
and original also from a purely mathematical point of view for the concurrence of the value ε = 2 as
special value both for the volume and λ1, a coincidence that certainly deserves further understanding
on the mathematical side.

We believe, however, that the simple observation in Eq. (23) could be a first step towards the
understanding of the coincidence stated above. Indeed, a very much conjectural, and simplified pic-
ture of why the charges become localized could be based on the counting of “useful” and “useless”
directions when crossing the handles connecting two different localized configurations. One can make
as well a connection with the question of entropic barriers in spin-glass dynamics (on this topic see
e.g. [58,59,60,61]). We leave this connection for future investigations.
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Fig. 8 (a) Correlation function, Eq. (24), as a function of physical time t with dt = 0.01. Dashed lines refer to
ε = 1.9 (ergodic region), solid lines to ε = 2.05 (near-critical region) and dashed-dotted lines to ε = 2.5 (localized
region). One can see that, except in the critical region, the decay has a wide simple exponential window. Each curve
is obtained by averaging over at least 5000 different runs.
(b) Correlation function at the critical point ε = 2. The decay is slower than an exponential (and becomes slower
as N is increased), as shows the comparison with the black dashed line. For each N we performed a fit logG(t) =
−t/τ − log(1 + (t/t1)z), finding values of τ , t1 and z that we report in Fig. 10. Each curve is obtained by averaging
over at least 50000 different runs.

7 A Brownian dynamics on the potential energy surface and the gap of the Laplacian

In order to extract the first non-zero eigenvalue of the Laplacian, we resorted to studying the cor-
relation functions of a Brownian motion on the surface Mε. Indeed, being the diffusion equation
described by the Laplacian, it is known that the late decay of the correlation functions of coordinates
(e.g. the charges qi) gives its first non-zero eigenvalue. Hence, we pick as a starting point a random
vector ~q that satisfies all the conditions in (22) (this can be easily done by repeatedly projecting on
the three distinct manifolds defined by each constraint, until they are all obeyed), and let it evolve
by free diffusion on Mε up to a final time Tf . Specifically, at each Monte Carlo step we update the

position as ~q(t+ dt) = ~q(t) + d ~W , where dWi are i.i.d. Gaussian random variables s.t. 〈dWi〉 = 0 and
〈dW 2

i 〉 = dt, dt being small1; and then we enforce again the constraints until they are all satisfied
(see App. B for more details).

We believe it is important to emphasize that our dynamics is fundamentally different from that
of [36,37,46,44]. In these works, the basic Monte Carlo step was the redistribution of charge within
a triplet of sites. Specifically, a triplet (qi, qj , qk) was updated to a randomly chosen new triplet
(q′i, q

′
j , q
′
k), with the constraint that the transformation (qi, qj , qk) 7−→ (q′i, q

′
j , q
′
k) could be performed

continuously in the subsystem defined by the three charges only, and without violating the (local)
charge and energy constraints. In the case of consecutive triplets i = j − 1 = k − 2, this Monte Carlo
algorithm provides a good description for the dynamics of a chain. The case of generic i, j, k, instead,
addresses a mean-field situation like the one considered in this work. We believe nevertheless that
it would be difficult to connect this “triplet” dynamics to the Brownian motion (which instead is
related to the eigenvalues of the Laplacian), so we decided to simulate directly the latter.

In Fig. 8 we show the time evolution of the (connected) correlation function

G(t) :=
1

N

N∑

i=1

〈
qi(t+ t′)qi(t

′)
〉
t′
− 1

N

N∑

i=1

〈
qi(t+ t′)

〉
t′

〈
qi(t
′)
〉
t′

(24)

where the angular brackets denote averaging wrt. the time variable in the subscript:

〈
A(t′)

〉
t′

:= lim
Tf→∞

1

Tf

∫ Tf

0

A(t′) dt′.

1 Notice that with this normalization ‖~q(t+ dt)− ~q(t)‖ = O(
√
N)
√
dt and the relative Fokker-Plank equation is

Eq. (25), which does not contain any explicit factor of N . Different scalings of dq can be easily obtained by rescaling
time.
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Fig. 9 (a) Correlation times τ extracted from the exponential decay of the correlation function, Eq. (24): we can
see that τ diverges in the thermodynamic limit as ε becomes greater than 2 (not all datasets are shown here to
improve readability). We have also performed fits (dashed lines): for ε > 2, we employed log τ = γN + c, from which
we extracted the γ’s presented in the right panel. For ε < 2, instead, since τ is almost constant with N we found that
finite-size effects are well accounted for by the fitting function τ = w/ log(N) + τ0. The τ0’s obtained are displayed
in the inset of the right panel.
(b) Exponent γ as a function of ε (black dots). It can be clearly seen that γ = 0 within errors for ε < 2, while
γ > 0 for ε > 2. The orange, dashed line is a fit of the form log γ = η log(ε − 2) + h, yielding η = 1.7 ± 0.1 and
h = −4.7 ± 0.1. Inset : The value of τ ' τ0 diverges logarithmically in the limit ε → 2− (see, for a comparison at
the critical point, Fig. 10a). The dashed line is a fit τ0 = −ζ log(2− ε) + u, from which we find ζ = 1.76± 0.02 and
u = 0.05± 0.01.

At t = 0, G(0) = (ε − 1) because of the second constraint in Eq. (22). Taking t → ∞, instead, if

the dynamics on the manifold is ergodic it holds G(∞) = 0. Conversely, if ergodicity is broken either
because Mε is disconnected in pieces or because the dynamics is effectively confined in a smaller
region, it holds G(t) → const > 0. According to the discussion before, Mε becomes disconnected
for ε > N/2. At this point there is a geometric obstruction to ergodicity: a trajectory starting in a
neighborhood of, say, q1 = O(N) cannot reach the neighborhood of any other qi = O(N) with i 6= 1.
Therefore, for these (large) values of ε the correlation function does not get to 0 as t → ∞. Before
then (viz. for any finite N , and any ε < N/2) there is always a finite time scale τ , after which the
function G(t) does get close to 0. This correlation time is a good proxy for an equilibrium time (since
the charges qi are the only observables of the systems).

We also note that G(t) must decay exponentially in t (after, of course, a possible initial transient).
This is due to the fact that a diffusion equation is associated to the Brownian motion:

∂tP (q, t) =
1

2
∆P (q, t), (25)

where the Laplacian has the usual definition in curvilinear coordinates ∆ := g−1/2∂a(g1/2gab∂b). The
smallest eigenvalue of −∆ is λ0 = 0, and the corresponding (properly normalized) eigenvector is
nothing but the uniform (microcanonical) distribution P (q, t → ∞) = φ0(q). Since the Laplacian on
a compact Riemannian manifold has a pure point spectrum, the first eigenvalue λ1 > 0 and the gap,
which we will denote as λ1 =: 1/τ, controls the asymptotic decay of P (q, t) ' φ0(q)+c1φ1(q)e−t/τ +....
In particular, this means that G(t) ∼ e−t/τ for large t, as claimed before.

The exponential decay can be seen clearly in Fig. 8a. Within the exponential form, one can
distinguish two cases: for ε < 2 the curves fall approximately on a universal curve, which is the
limit N → ∞; for ε ≥ 2 various system sizes have different decays: larger systems decay on a longer

timescale and there is no obvious limit N →∞. This corresponds to the following statement on the
spectrum of the Laplacian: for ε < 2 the gap remains finite when N → ∞, while for ε ≥ 2 the gap
closes with N . We find numerically that the gap closes exponentially with N : τ ' eγN for some rate
γ > 0, see Fig. 9. This fact implies that ε = 2 is a dynamical critical point, at which the dynamics
becomes scale-invariant [62].

More precisely, for ε < 2 the timescale τ is constant with N and grows with ε, ultimately diverging
logarithmically as ε→ 2− (see the inset of Fig. 9b). For ε > 2, it is γ(ε) which grows with ε: γ ∼ (ε−2)η

with η ' 1.7± 0.1 (see Fig. 9b).
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Fig. 10 (a) Typical timescales of the exponential (τ) and power-law (t1) decay of the correlation function at the
critical point ε = 2, found from the fits of the correlation function G(t) (Fig. 8b). We see that the crossover to
power-law decay takes place at N & 2000 (shaded region), so much larger system sizes are needed to extract a clean
dynamical critical exponent z.
(b) Corresponding values of the dynamical critical exponent z. The errorbars represent the fit errors, that surely
underestimate the strong fluctuations at finite N (see also [46,47]). Therefore, we can only present two possible fits,
one excluding the smallest N points and one the largest, and give a value of z respectively z ' 1.0 and z ' 0.75.
Since the smallest N points have t1 > τ (as seen in panel (a)), which is a clear pre-asymptotic behavior, we would
tend to discard them in favour of the 3 largest N points in the dataset.

To sum up: to the left of the critical point ε = 2 the dynamics is ergodic and G(t)→ 0 for any N

and also for the limit N →∞; to the right, instead, the relaxation becomes progressively slower as N
increases and in the limit N → ∞ it holds G(t) → const > 0. The limiting functional form at ε = 2
must be a function decaying to 0, but slower than an exponential. We checked that, in a small right
neighborhood of ε = 2, the fitting function G(t) = (ε− 1)e−t/τ/(1 + (t/t1)z) works pretty accurately
with z ∈ [0.7, 1.0] depending on the values of N used (see Figs. 8b and 10 for the details). Indeed, for
this estimate to be useful one must have t1 � τ → ∞, to ensure a sufficiently large fitting window.
Since τ grows with N (albeit only logarithmically) while t1 decreases (see Fig. 10a), it will eventually
hold t1 � τ . Unfortunately, this crossover takes place roughly at the largest system sizes we were able
to simulate, so the values of z we can extract cannot be considered precise. By using only the points
in the “asymptotic region” (shaded region in Fig. 10), z ' 1.0, while smaller values of N (non-shaded
region) we have a considerably smaller z ' 0.75. The precise values of the critical exponents clearly
requires further numerical investigations. We end by noticing that the form of G(t) at criticality can
be related to the distribution ρ(λ) of the eigenvalues of the Laplacian at ε = 2, which must be of the
form ρ(λ) ∼ λz−1 near λ = 0.

8 Conclusions and Outlook

We have studied the mechanism for weak ergodicity breaking at high energy densities in a fully
connected DNLSE model. We have shown that, whatever the interactions between sites (kinetic en-
ergy term) are, they can be neglected for ε ≥ εs = 1.481... that corresponds to a finite temperature
Ts = 2g = 2. We are left therefore with a purely potential model, whose physical properties reflect
the geometrical properties of the potential energy surface and therefore are subject to a localization
transition at infinite temperature (corresponding to εc = v = 2). After proving that the microcanon-
ical, potential energy surface is connected for all extensive energies (therefore energy densities of
O(1)), we show that the localization transition is due to a phase transition in the order parameter
γ = −(log λ1)/N , where λ1 is the smallest non-zero eigenvalue of −∆, the Laplacian on the (curved)
equipotential surface. For ε < 2 we have γ = 0 and for ε > 2 we have γ ∼ (ε − 2)η with η around
2. This puts on firmer ground the connection between the works on thermodynamics (like [46,47])
and those on the dynamics (like [36,37,44]). The approximation in which one can neglect the kinetic
energy is exact on the fully connected model, and one can imagine that it is a good approximation
for a finite-dimensional lattice, therefore making our results qualitatively compelling for the experi-
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mental observations in [30,31] and the numerical works [42]. Making a quantitative connection, and
computing a possible 1/κ series of corrections to our results is left for future work.

The transition taking place at εc = 2 makes the equilibration time τ change from O(1) to expo-
nentially large in N , τ ∼ eγN : the phenomenology is very similar to that observed in the MBL-like
phase of Josephson junction arrays [15,16], and of quantum glasses as well [63,64,65,66]. However,
the nature of the transition in the DNLSE seems to be of entropic origin: the volume of the region
of phase space around any given localized configuration is exponentially larger than the volume con-
necting two localized configurations, therefore making the passage from one localized configuration
to another exponentially unlikely. Quantum mechanical localization, in contrast, is a consequence
of interference and it vanishes when ~ → 0. It is also tempting to notice that the lowest eigenvalue
of −∆ becoming exponentially small in a large parameter is precisely what happens in localized
quantum-mechanical Schrödinger equations. However, given these elements, we cannot argue more
than a similarity at a formal level.

We also refrain from speculating on the effect of turning on ~. Previous works have shown that,
for ~ 6= 0 and at least in a 1d geometry, transport is strongly suppressed as T → ∞ [67] and non-
Gibbs state exist for ε ≥ 2 as well [48]. In a more general setting, on the one hand one would expect
that a charge localized on a site could tunnel quantum-mechanically towards a neighboring site; on
the other hand the effects of interference should be taken into account as in [15,16]. Sorting out the
leading effects of quantization upon the system (1), at least at the semiclassical level, is left out for
future work.
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A The topology of the equipotential manifolds

Here, we want to provide a detailed description of the topology of the manifoldsMε determined by equation (22), as
outlined in Sec. 6 in terms of Morse theory. Actually, in order to avoid the technicalities of stratified Morse theory,
we prefer to adopt a different, more direct approach, using only basic notions and results of piecewise topology, for
which we refer to [68].

According to (22), we can think ofMε as the intersection between the sphere SN−1
ε ⊂ RN centered at the origin

of radius
√
εN and the simplex ∆N−1 ⊂ RN affinely spanned by the vectors Ne1, . . . , NeN , where e1, . . . , eN is the

canonical base of RN .
Given any k-dimensional sub-simplex Σ = 〈Nei1 , . . . , Neik+1

〉 ⊂ ∆N−1 with 0 ≤ k ≤ N − 1, let b(Σ) =

N(ei1 + · · ·+ eik+1
)/(k+ 1) be the barycenter of Σ. We indicate by Γ the barycentric subdivision of ∆N−1, whose

k-simplices are given by 〈b(Σi1 ), . . . , b(Σik+1
)〉 for any ascending chain Σi1 ⊂ · · · ⊂ Σik+1

of sub-simplices of

∆N−1. Moreover, for every 0 ≤ k ≤ N − 1, let Γk and Γk denote the sub-complexes of Γ consisting of all simplices
〈b(Σi1 ), . . . , b(Σi`+1

)〉 such that dimΣij ≤ k and dimΣij ≥ k + 1, respectively.

We observe that Γk coincides with the barycentric subdivision of the k-skeleton ∆N−1
k of ∆N−1, hence dimΓk =

k, while Γk is the sub-complex of Γ consisting of all the simplices that are disjoint from ∆N−1
k , and dimΓk =

N − k − 2. Furthermore, Γ can be expressed as the affine join Γ = Γk ∗ Γk in RN , that is for every simplex Σ ∈ Γ
we have Σ = (Σ ∩ Γk) ∗ (Σ ∩ Γk). Then, there is a well-defined pseudo-radial projection πk : Γ − Γk → Γk, which
collapses Σ − Γk to Σ ∩ Γk for every simplex Σ of Γ .

Now, we can start our description of Mε. First of all, we note that Mε is empty for ε < 1 and ε > N , while it
consists of the single point b(∆N−1) for ε = 1 and of the N vertices of ∆N−1 for ε = N .

When ε ranges in the interval [1, N ] the sphere SN−1
ε meets transversally each subsimplex of ∆N−1, except for

ε = N/k with k = 1, . . . , N , in which case SN−1
ε is tangent to all the

(N
k

)
subsimplices of ∆N−1 of dimension k− 1

at their barycenters. As a consequence, each Mε can be endowed with a structure of stratified space, whose strata
are the components of the intersections of SN−1

ε with the open simplices of ∆N−1. Moreover, such structure is the
same up to smooth isomorphism for all ε in each open interval (N/(k + 1), N/k) with k = 1, . . . , N − 1.

Now, fix ε ∈ (N/(k + 1), N/k) with k = 1, . . . , N − 1. In order to describe Mε, we consider the affine subspace

AN−1 ⊂ RN spanned by Ne1, . . . , NeN , the (N − 2)-dimensional sphere SN−2
ε = SN−1

ε ∩ AN−1, and the (N − 1)-

dimensional closed ball BN−1
ε = BNε ∩ AN−1 bounded by SN−2

ε in AN−1, where BNε ⊂ RN is the N -cell centered

at the origin of radius
√
εN .

The inequality ε > N/(k + 1) implies that Γk−1 ⊂ IntBN−1
ε , since all the vertices of Γk−1 belong to IntBNε .

On the other hand, the inequality ε < N/k implies that Γk−1 ⊂ AN−1 − BN−1
ε , being d(0, Σ) = ‖b(Σ)‖ = N/k

for any (k − 1)-dimensional face Σ of ∆N−1. Therefore, SN−2
ε transversally meets in a single point each segment

〈p, q〉 ⊂ Σ with p ∈ Γk−1, q ∈ Γk−1 and Σ a simplex of Γ . Hence,Mε is pseudo-radially equivalent, to the boundary
BdN(Γk−1, Γ ) of a regular neighborhood N(Γk−1, Γ ) of Γk−1 in Γ . Finally, due to the inclusion Γk−1 ⊂ BdΓ , we
can conclude thatMε is topologically equivalent to a regular neighborhood N(Γk−1,BdΓ ) of Γk−1 in BdΓ . Notice
that N(Γk−1,BdΓ ) coincides with the suplevel set Mε(ϕ) considered in Sec. 6.

Of course, up to radial projection in AN−1 centered at b(∆N−1), we can identify Bd∆N−1 with SN−2
ε and

Γk−1 with a sub-complex Γk−1,ε ⊂ SN−2
ε , in such a way that Mε turns out to be topologically equivalent to a

regular neighborhood N(Γk−1,ε, SN−2
ε ) of Γk−1,ε in SN−2

ε . Then, there is a collapse Mε ↘ Γk−1,ε
∼= Γk−1.

The argument above also applies to the case of ε = N/k, with the only difference that in this

case the regular neighborhoods N(Γk−1,BdΓ ) and N(Γk−1,ε, SN−2
ε ) are relative to the 0-dimensional subcomplex

{b(Σ) |Σ is a (k − 1)-face of ∆N−1}, but still we have Mε ↘ Γk−1,ε
∼= Γk−1.

Summarizing,M1 consists of a single point andMε is homotopically equivalent to ∆N−1
k−1 for every N/(k+1) <

ε ≤ N/k and k = 1, . . . , N − 1. In particular, Mε is connected non-empty if 1 ≤ ε ≤ N/2, while it splits into the
disjoint union of N disks, one for each vertex of ∆N−1 if N/2 < ε ≤ N .

B Numerical implementation of the Brownian motion

To simulate efficiently a Brownian dynamics on the manifold Mε of Eq. (22) we proceeded as follows. As a first
thing, we changed variables to

xi := qi − 1,

in view of the fact that 〈qi(t)〉t = 1 if the dynamics is ergodic. In term of the x variables, Eq. (22) reads
∑N
i=1 xi = 0 (26)∑N
i=1 x

2
i = Nε (27)

xi ≥ −1 ∀i = 1, 2, . . . , N. (28)

Then, at each time step t we draw N iid. gaussian variables dWi(t) ∼ N (0, dt) and propose a move xi(t) 7→
yi(t) := xi(t) + dWi(t). The point ~y lies no more on Mε, since we have violated the constraints in Eqs. (26)–(28)
with probability 1. Therefore, we need the following passages:

1. we impose Eq. (26) by simply subtracting 1
N

∑
j yj from each yi, obtaining a set of y′i;

2. we impose Eq. (27) by multiplying each y′i by Nε/
∑
j(y
′
j)

2, obtaining a set of y′′i .

Now both Eqs. (26) and (27) are satisfied, but it may be that some inequality in Eq. (28) is violated. Therefore, we
need the last passage:
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3. we check that each y′′i ≥ −1, and if it is not the case we reflect y′′i 7→ y′′′i = −2− y′′i .

Now all the constraints in Eq. (28) are satisfied, but we are violating again Eqs. (26) and (27). Thus, we start
again from point (i) and repeat the procedure until every constraint is satisfied, finally obtaining a point ~x(t+ dt).
Typically, a few iterations are sufficient. We have also explicitly checked that we do not introduce jumps, and that

the statistics of ‖~x(t+ dt)− ~x(t)‖ is very close to that of ‖d ~W‖.
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