The study investigates four paper-based materials designed for short-time wrapping of meat products by determining morpho-structure, capillary-hydroscopic, barrier and antibacterial properties, wettability and migration into food simulants. The paper-based materials are coded as RO, SP, IT and SLO. RO and SLO samples exhibit the best barrier properties against water vapors. The low solubility and contact angles of RO, IT and SLO in A simulant (distilled water) make them suitable for aqueous food storage. The extremely high solubility of SP and SLO in simulant B (acetic acid) shows that wax and hydrophobized starch, respectively are carried by the acidic media, thus these agents are unlikely to coat the paper designed to package acidic food. SLO inhibits E. coli, Salmonella enterica, Lysteria monocytogenes, Pseudomonas aeruginosa and fluorescens. Polyethylene coated on RO and IT surface and wax impregnated on SP have a lower antimicrobial activity in comparison with hydrophobized starch coated on SLO.

Barrier properties, migration into the food simulants and antimicrobial activity of paper-based materials with functionalized surface

Nzekoue, Franks Kamgang;Huang, Xiaohui;Sagratini, Gianni
Penultimo
;
Silvi, Stefania
Ultimo
2022-01-01

Abstract

The study investigates four paper-based materials designed for short-time wrapping of meat products by determining morpho-structure, capillary-hydroscopic, barrier and antibacterial properties, wettability and migration into food simulants. The paper-based materials are coded as RO, SP, IT and SLO. RO and SLO samples exhibit the best barrier properties against water vapors. The low solubility and contact angles of RO, IT and SLO in A simulant (distilled water) make them suitable for aqueous food storage. The extremely high solubility of SP and SLO in simulant B (acetic acid) shows that wax and hydrophobized starch, respectively are carried by the acidic media, thus these agents are unlikely to coat the paper designed to package acidic food. SLO inhibits E. coli, Salmonella enterica, Lysteria monocytogenes, Pseudomonas aeruginosa and fluorescens. Polyethylene coated on RO and IT surface and wax impregnated on SP have a lower antimicrobial activity in comparison with hydrophobized starch coated on SLO.
2022
262
File in questo prodotto:
File Dimensione Formato  
Peter et al. 2022.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale
Licenza: PUBBLICO - Creative Commons
Dimensione 2.81 MB
Formato Adobe PDF
2.81 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/467234
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact