We study the non-linear dynamics of a multimode optomechanical system constituted of a driven high-finesse Fabry–P´erot cavity containing two vibrating dielectric membranes. The analytical study allows to derive a full and consistent description of the displacement detection by a probe beam in the non-linear regime, enabling the faithful detection of membrane displacements well above the usual sensing limit corresponding to the cavity linewidth. In the weak driving regime where the system is in a pre-synchronized situation, the unexcited oscillator has a small, synchronized component at the frequency of the excited one; both large and small amplitude resonator motions are transduced in a nontrivial way by the non-linear response of the optical probe beam. We find perfect agreement between the experimental results, the numerical simulations, and an analytical approach based on slowly-varying amplitude equations.
Two-membrane cavity optomechanics: non-linear dynamics
Piergentili, P;Natali, R;Malossi, N;Vitali, D;Di Giuseppe, G
2021-01-01
Abstract
We study the non-linear dynamics of a multimode optomechanical system constituted of a driven high-finesse Fabry–P´erot cavity containing two vibrating dielectric membranes. The analytical study allows to derive a full and consistent description of the displacement detection by a probe beam in the non-linear regime, enabling the faithful detection of membrane displacements well above the usual sensing limit corresponding to the cavity linewidth. In the weak driving regime where the system is in a pre-synchronized situation, the unexcited oscillator has a small, synchronized component at the frequency of the excited one; both large and small amplitude resonator motions are transduced in a nontrivial way by the non-linear response of the optical probe beam. We find perfect agreement between the experimental results, the numerical simulations, and an analytical approach based on slowly-varying amplitude equations.File | Dimensione | Formato | |
---|---|---|---|
Published-Piergentili_2021_New_J._Phys._23_073013.pdf
accesso aperto
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale
Licenza:
PUBBLICO - Creative Commons
Dimensione
6.04 MB
Formato
Adobe PDF
|
6.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.