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Abstract
We study the non-linear dynamics of a multimode optomechanical system constituted of a driven
high-finesse Fabry–Pérot cavity containing two vibrating dielectric membranes. The analytical
study allows to derive a full and consistent description of the displacement detection by a probe
beam in the non-linear regime, enabling the faithful detection of membrane displacements well
above the usual sensing limit corresponding to the cavity linewidth. In the weak driving regime
where the system is in a pre-synchronized situation, the unexcited oscillator has a small,
synchronized component at the frequency of the excited one; both large and small amplitude
resonator motions are transduced in a nontrivial way by the non-linear response of the optical
probe beam. We find perfect agreement between the experimental results, the numerical
simulations, and an analytical approach based on slowly-varying amplitude equations.

1. Introduction

Multimode optomechanical systems [1] are attracting an increasing interest for the study of collective
dynamical effects, both at quantum and classical level. Two different situations are mainly considered from
both the theoretical and experimental point of view: (i) a group of mechanical oscillators interacting via
radiation pressure with the same optical mode [2–17] (e.g. multiple membranes within the same optical
cavity); (ii) an array of mechanical oscillators each interacting locally with a single optical mode, and
coupled by the tunnelling of photons and phonons between neighbouring sites [18–23], (e.g.
optomechanical crystals in one and two dimensions [24]).

Several features of multimode optomechanical systems have already been investigated in the literature,
such as long-range collective interactions [4, 7, 9] yielding an effective increase of the optomechanical
coupling, slowing and stopping light [18], correlated quantum many-body states [20], reservoir engineering
and dynamical phase transitions [6], graphene-like Dirac physics [22], topological phases of sound and
light [23], transport in a one-dimensional chain [21, 25, 26], superradiance and collective gain [27], and
nonreciprocal routing of electromagnetic signals [28, 29].

The radiation pressure interaction is inherently non-linear and the effects of such non-linearity on the
mechanical motion are easily manifested when the optical cavity is driven on the blue sideband, when
optical backaction is responsible for mechanical antidamping [1]. When the latter overcomes the internal
mechanical friction, a Hopf bifurcation towards a regime of self-induced mechanical oscillations takes place
[30–36], with a fixed amplitude, and a free running oscillation phase, which may lock to external forces or
to other optomechanical oscillators [37]. This mutual phase-locking of self-oscillating resonators is at the
basis of optomechanical synchronization, which has been thoroughly investigated both theoretically [5, 19,
20, 38–45], and experimentally [46–55] under different configurations. The non-linear effects of radiation
pressure manifest themselves whenever the mechanical motion produces a cavity frequency shift
comparable or larger than the optical linewidth, resulting in a nontrivial modification of the cavity response
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to the external driving. This is responsible for a variety of non-linear phenomena beyond synchronization,
such as phonon lasing [56], mode competition [57], and chaos [58–60]. This radiation-pressure-induced
non-linear behaviour may occur not only when the mechanical resonators are driven to large amplitude via
the parametric amplification provided by blue-sideband driving, but also in the strong optomechanical
coupling regime [61] where even intrinsic Brownian motion induces cavity frequency fluctuations larger
than the optical linewidth [62, 63]. In both situations, the optomechanical non-linearity plays a
fundamental role, affecting optomechanical displacement measurement and transduction, and this role can
be exploited for extending in a nontrivial way the dynamic range of optomechanical sensors beyond the
cavity linewidth regime [64].

Here we experimentally explore the non-linear dynamics of the multimode optomechanical setup first
demonstrated in reference [14], realized by placing a membrane cavity within a high-finesse Fabry–Pérot
cavity. Reference [14] reported a ∼ 2.47 gain in the optomechanical coupling strength of the membrane
relative motion with respect to the single membrane case, and showed the capability to tune the
single-photon optomechanical coupling on demand. Reference [55] recently demonstrated synchronization
of this two-membrane cavity optomechanical system, by operating with a low-finesse cavity in the strongly
unresolved sideband regime. Here instead we focus onto the pre-synchronization regime of weak
blue-detuned driving, where only one of the two membrane resonators enters into a limit cycle through the
Hopf bifurcation, while the other resonator remains in a mixed condition where the modulation of the
radiation pressure force induced by the excited oscillator does not prevail over the thermal motion. We
provide a detailed, quantitative analysis of the dynamics in this regime, with a significant agreement
between the experimental data, the numerical simulation, and the analytical treatment based on amplitude
equations of reference [45]. This quantitative analysis is based on a detailed treatment of the optical
detection apparatus including the probe and calibration tones, and provides an accurate, reliable,
measurement of the displacement of both membranes, even in the non-linear regime where the frequency
modulation caused by the two membranes’ motion is significantly larger than the cavity linewidth. A
remarkable result of this analysis is that, in the presence of a self-oscillating resonator in a limit cycle,
non-linear corrections to the displacement measurement by the probe cavity output must be applied not
only to the excited resonator but also to the small-amplitude, unexcited one. This implies that in multimode
optomechanical systems, whenever multiple mechanical resonators are detected by the same single probe
field (such as for example in references [46, 47, 50, 51, 53]), and at least one resonator enters a limit cycle,
one has to properly include the full non-linear dynamics of the system in order to extract the correct
displacement measurement from the output probe spectrum.

The paper is organized as follows: in section 2 we provide the basic theoretical description of the
multimode optomechanical system under study. In section 3 we describe the experimental setup, and in
section 4 we derive in detail the probe beam power spectral density, including all the non-linear effects. In
section 5 we analyse the non-linear dynamics of the mechanical modes at the onset of synchronization and
we provide an analytical description in very good agreement with the numerical and experimental results.
Section 6 is for concluding remarks.

2. Theoretical description of the system dynamics

We study the non-linear dynamics of a multimode optomechanical system, formed by two electromagnetic
and two mechanical modes, at room temperature, which justifies a treatment in terms of classical
amplitudes, and implies that thermal noise will be dominant for the mechanical modes and treated as
classical complex random noises. The two optical modes with frequencies ωci, i = (1, 2), total cavity
amplitude decay rates κi = κin,i + κex,i with κex,i optical loss rates through all the ports different from the
input one κin,i, and driven at frequencies ωLi, interact via radiation-pressure with two mechanical modes
with resonance frequencies ωj, j = (1, 2), mass mj, and amplitude decay rates γ j. Their dynamics is
described by the set of coupled classical Langevin equations for the corresponding optical and mechanical
complex amplitudes αi(t) and βj(t) [40, 41, 44], respectively,

α̇i(t) =
(

iΔ(0)
i − κi

)
αi(t)+Ei+

∑
j=1,2

2igij Re[βj(t)]αi(t)+
√

2κiα
opt
i (t), (1)

β̇ j(t) = (−iωj − γj)βj(t) + i
∑
i=1,2

gij|αi(t)|2 +
√

2γjβ
in
j (t), (2)

where Δ(0)
i = ωLi − ωci are the detunings, Ei =

√
2κin,iPi/�ωLi the driving rates with Pi the associated laser

input powers, gij = −(dωci/dxj)xzpf,j the single-photon optomechanical coupling rates, xzpf,j =
√
�/2mjωj

2
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the spatial width of the jth oscillator zero point motion, and βin
j (t), and α

opt
i (t), are the mechanical and

optical noise terms, respectively. These noises are uncorrelated from each other and the only nonzero

correlation functions are 〈βin,∗
j (t)βin

j′ (t′)〉 = (n̄j + 1/2)δjj′δ(t − t′), where n̄j =
[
exp

(
�ωj/kBT

)
− 1

]−1 �
kBT/�ωj 	 1 is the mean thermal occupation number. Multimode optomechanical systems formed by two
electromagnetic modes and two mechanical modes have been proposed and demonstrated [28, 29] for the
nonreciprocal routing of signals controlled by the relative phase of multiple external and off-resonant
drives. In the present case the weak, quasi-resonant driving probe beam is used only for detecting the
mechanical motion and we are far from the regime where one can use and control the relative phase of the
drivings for nonreciprocal effects. In this system, under appropriate parameter regimes, the pump cavity
mode (i = 1) may drive the oscillators into a self-sustained limit cycle [30–35], which may eventually
become synchronized. Synchronization may occur on a long timescale, determined by the inverse of the
typically small parameters Δω = ω2 − ω1 (typically never larger than few kHz), and γ j (order of Hz).
Therefore it is physically useful to derive from the full dynamics of the classical Langevin equations (1) and
(2), approximate equations able to correctly describe the slow, long-time dynamics of the two mechanical
resonators, leading eventually to synchronization.

We adapt here the slowly varying amplitude equations approach of reference [5] to the case with noise
studied here, as discussed in detail in reference [45], discarding here the limiting case of chaotic motion of
the two resonators, which however occurs only at extremely large driving powers, and are not physically
meaningful for the Fabry–Pérot cavity system considered here, it is known that each mechanical resonator,
after an initial transient regime, sets itself into a dynamics of the following form

βj(t) = β0,j + Aj(t)e−iωreft , (3)

where β0,j is the approximately constant, static shift of the jth resonator, Aj(t) is the corresponding
slowly-varying complex amplitudes, and ωref 	 Δω is a reference mechanical frequency, of the order of ωj.

From equations (1) and (2) one gets the set of coupled amplitude equations [45]

Ȧ1(t) = [−γ1 − iΔω1] A1(t) + id1A1(t) + id12A2(t) + i
∑
i=1,2

gi1η
opt
i (t) +

√
2γ1β

in
1 (t), (4)

Ȧ2(t) = [−γ2 − iΔω2] A2(t) + id2A2(t) + id12A1(t) + i
∑
i=1,2

gi2η
opt
i (t) +

√
2γ2β

in
2 (t), (5)

with Δωj = ωj − ωref , and where

d1 =

(
g2

11 F1

gb
1

+
g2

21 F2

gb
2

)
, (6)

d2 =

(
g2

12 F1

gb
1

+
g2

22 F2

gb
2

)
, (7)

d12 =

(
g11g12F1

gb
1

+
g21g22F2

gb
2

)
, (8)

are non-linear coefficients because of their dependence upon the regular dimensionless auxiliary functions
Fi, which are given by

Fi =
E2

i

|Ab
i |

∞∑
n=−∞

Jn (−ξi) Jn+1 (−ξi)

[inωref −Wi][−i(n + 1)ωref −W∗
i ]

, (9)

and which can be easily shown to be a function of even powers of |Ab
i | only. We have defined the bright

complex amplitudes Ab
i (t) = |Ab

i (t)|eiθi(t) =
∑

jgijAj(t)/gb
i , gb

i =
√

g2
i1 + g2

i2, ξi = 2gb
i |Ab

i |/ωref,

Wi = i
[
Δ(0)

i +
∑

gij(β0,j + β∗
0,j)

]
− κi, and Jn is the nth Bessel function of the first kind. ηopt

i is the term

describing the noise of optical origin [45]. As already shown in references [5, 45], equations (4) and (5)
provide a general and very accurate description of the dynamics of the two mechanical resonators.

3. Experimental setup

The experimental setup for studying the non-linear dynamics in an optomechanical system constituted of a
two-membrane sandwich within a cavity, is shown in figure 1. A laser beam at wavelength λ0 = 1064 nm is
split in a probe beam with intensity Pprobe = 5.9 μW, modulated by an electro-optical modulator (EOM),
and a pump beam, detuned by Δ1 from the cavity resonance by means of an acousto-optic modulator

3
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Figure 1. Experimental setup for studying the non-linear dynamics in an optomechanical system constituted of a
two-membrane sandwich within a cavity. A probe beam, frequency modulated by an EOM, impinges on the optical cavity. The
reflected beam is split: one component is detected, demodulated and low-pass amplified for generating the PDH error signal able
to lock the laser to the cavity; the second component is analysed by homodyne detection in order to detect the mechanical
motion. A further beam, the pump beam, detuned by Δ1 from the cavity resonance by means of an AOM, is turned on for
engineering the optomechanical interaction, and in particular to realize laser driving of the mechanical modes. HWP denotes a
half-waveplate, QWP a quarter-waveplate, BS a beam-splitter, and PBS a polarizing beam-splitter.

(AOM). The reflected probe beam is locked to the optical cavity by means of a Pound–Drever–Hall (PDH)
technique, and the thermal voltage spectral noise (VSN) is measured by homodyne detection of the light
reflected by the optical cavity. The pump beam is used for engineering the optomechanical interaction, and
in particular to realise laser driving of the mechanical modes.

The optical and mechanical properties of the optomechanical system were investigated in reference [14].
The membrane-cavity length, realised with two equal membranes (Norcada), was measured to be Lc =

53.571(9) μm, and the membrane thickness is Lm = 106(1) nm that is found assuming the index of
refraction of Si3N4 given in reference [65]. Assuming rectangular membranes, and the nominal values
provided by the manufacturer for the stress, σ = 0.825 GPa, and for the density ρ = 3100 kg m−3, the side
lengths were estimated to be L(1)

x = 1.519(6) mm, L(1)
y = 1.536(6) mm, and L(2)

x = 1.522(6) mm, L(2)
y =

1.525(6) mm. We studied the dynamics of the lower frequency mode of the two membranes: for the first
membrane we measured ω1 � 2π× 230.795 kHz, γ1 � 2π× 1.64 Hz, while for the second ω2 � 2π×
233.759 kHz, γ2 � 2π× 9.37 Hz. The membrane-cavity is placed in the middle of an optical cavity with
empty cavity finesse F0 = 50125(25), which reduces to F = 12463(13) when the membrane-sandwich is
placed in. Such finesse corresponds to a cavity intensity decay rate 2κ = τ−1 = FSR/F � 2π× 134 kHz,
with FSR � 2π× 1.67 GHz.

4. Spectral analysis of the probe beam

Experimentally we have studied the weak driving regime of the onset of synchronization where only one of
the two membrane resonators, say first oscillator, enters into a limit cycle through the Hopf bifurcation
associated with the parametric instability [32]. In this regime the other resonator remains in a mixed
condition where the modulation of the radiation pressure force induced by the first oscillator is not yet able
to prevail over the thermal noise contribution [5, 45].

In figure 2 are compared simulated and experimental results for a set of parameters in this weak driving
regime. On panel (b) is reported the VSN of the homodyne signal as a function of time, where the
frequencies are counted from the frequency of the fundamental mode of the first oscillator, ω1, (marked by
an orange square symbol, while the second mode is marked by a dark-green square symbol). During the
first 10 s, the pump beam is turned off, and the VSN shows the thermal displacement of the fundamental
modes of the two membranes. The magenta square symbol marks the external tone used for determining
the single-photon optomechanical coupling g1 � 2π× 0.43 Hz, and g2 � 2π× 0.70 Hz, and for calibrating
the VSN in displacement spectral noise (DSN) [66]. Finally, after 10 s the pump beam is turned on at a blue
detuning Δ1/2π = 259.350 kHz with a power of 4.25 μW for studying the dynamics of the optomechanical

4
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Figure 2. Spectral noise of the output probe beam centred at the fundamental mode frequency of the first oscillator, which
reaches a limit cycle, in a range of time of 50 s. (a) Numerical simulation of the output field VSN, and (b) experimental VSN
(VSN in V2 Hz−1). After 10 s the pump beam is turned on with a power of 4.25 μW, and after 25 s increased to 6.0 μW. The
optomechanical parameters derived as mean values of the first 8 thermal spectra, are: ω1 � 2π× 230.795 kHz, g1 � 2π× 0.43 Hz,
ω1 � 2π× 233.759 kHz, g2 � 2π× 0.70 Hz. (c) Variances corresponding to the frequency ranges highlighted by the squares
symbols: orange curve for the first mode; dark-green curve for the second mode; light-green curve for the sideband at 2ω1 − ω2;
magenta curve for the calibration tone at ωb = 2π× 226.000 kHz. Residual detuning beat tone at ωdet = 2π× 259.350 kHz is
outside the displayed frequency range. Areas A and A′ indicate the steady-state regime reached for the two power settings.

system, and after 25 s increased to 6.0 μW. Panel (c) of figure 2 shows the variances corresponding to the
integral over the frequency range denoted by the squares symbols in panel (b). Panel (a) of figure 2 shows
the numerical simulation of the non-linear dynamics of the system provided by integration of equations (1)
and (2). We note the remarkable agreement between simulated and experimental data. Results in figure 2
shows that when the first membrane reaches a limit cycle, sidebands around its central frequency appears
on the output field. In particular the experimental data and simulations demonstrate the appearance of the
sideband due to the second mode (light-green square symbol) at 2ω1 − ω2.

For a detailed quantitative description of these results, we need to reconsider the non-linear dynamics of
the mean cavity-field amplitude α2 of the probe beam described by equation (1), and replace the input
noise operator with the input field with a sinusoidal modulation at ωb for calibration. Moreover, for
simplicity we drop everywhere the index 2 when referring to the cavity probe field, that is α2 → α, κ2 → κ

and so on. We get
α̇ = −κα+ i

[
Δ(0) + 2g1 Re[β1(t)] + 2g2 Re[β2(t)]

]
α+ Ein, (10)

where Ein =
√

2κin ein exp[−iβ sin(ωbt)], and ein =
√
Pin/�ωL. We assume that the behaviour of the two

oscillators is also sinusoidal as in equation (3), i.e., βj(t) = β0,j + |Aj|exp[i(ωmjt + φj)], and that the first
oscillator reaches a limit cycle with an amplitude |A1| for which g1|A1| is much larger that g2|A2|. The
solution of equation (10) can be found considering an expansion in terms of ε = g2|A2|/g1|A1|, that is
α =

∑
j ε

jαj. The zero-order solution, α0, satisfies

α̇0 = −κα0 + i
[
Δ+ 2g1|A1| cos(ω1t + φ1)

]
α0 +

√
2κin ein e−iβ sin(ωbt), (11)

where Δ = Δ(0) + 2g1 Re[β0,1] + 2g2 Re[β0,2], and a first-order perturbation solution α1, driven by the
amplitude of the second oscillator,

α̇1 = −κα1+i
[
Δ+ 2g1|A1|cos(ω1t+φ1)

]
α1+i2g2|A2| cos(ω2t+φ2)

α0

ε
. (12)

Solution of equation (11) provides the leading-order contribution to the cavity response function
C =

∑
jε

jCj, with C = α/ein,

C0 =
√

2κin

∑
b

Jb(−β) eibωbt Cb(ξ), (13)

where ξ = 2g1|A1|/ω1, and

Cb(ξ) =
∑
m,n

Jm−n(−ξ)Jm(−ξ)

i(mω1 + bωb) −W ein(ω1t+φ1), (14)

5
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with W = iΔ− κ. The first-order solution can be found to be

εC1 =
√

2κin

∑
b

Jb(−β)eibωbt
[
δC+

b (ξ)ei(ω2t+φ2) + δC−
b (ξ)e−i(ω2t+φ2)

]
, (15)

where

δC±
b (ξ) =

ig2|A2|√
2

∑
m,n

Jm−n(−ξ)Jm(−ξ)

i(mω1 + bωb) −W
ein(ω1t+φ1)

i(mω1 + bωb ± ω2) −W . (16)

Finally we observe that C is composed by a series of sidebands at frequencies nω1 + bωb ± ω2, which are
reproduced on the reflected output field determined by the input–output relation
eout = −ein exp[−iβ sin(ωbt)] +

√
2κinα.

The cavity reflection function, R = eout/ein =
∑

jε
jRj, has a leading-order contribution

R0 =
∑

b

Jb(−β) eib ωbt Rb(ξ). (17)

We observe that R0 is the superposition of the cavity reflection function Rb(ξ) at each sideband frequencies
bωb of the input field

Rb(ξ) = −1 + 2κinCb(ξ). (18)

The first-order contribution is
R1 =

√
2κinC1. (19)

We consider now the modulation amplitude β, and the amplitude of the second mode, as small
perturbations, that is β � 1, and R � R0 + εR1. In particular we focus on the contributions at DC, and at
the five frequencies: ω1, ω2, ωsm = 2ω1 − ω2, ωb, and ωsb = 2ω1 − ωb.

In this case we have

R � RDC +R+(ω1)ei(ω1t+φ1) +R−(ω1)e−i(ω1t+φ1)

+R+(ω2)ei(ω2t+φ2) +R−(ω2)e−i(ω2t+φ2)

+R+(ωsm)ei(ωsmt+φsm) +R−(ωsm)e−i(ωsmt+φsm)

+R+(ωb)eiωbt +R−(ωsb)e−iωbt

+R+(ωsb)ei(ωsbt+φsb) +R−(ωsb)e−i(ωsbt+φsb), (20)

The contribution at DC is provided by equation (17) for b = 0, and the time-independent term (n = 0)
of equation (14)

RDC = J0(−β)

[
−1 + 2κin

∑
m

J2
m(−ξ)

imω1 −W

]
; (21)

at ω1 is given by equation (17) with b = 0, and in equation (14) the term with n = ±1

R±(ω1) = J0(−β)2κin

∑
m

Jm(−ξ)Jm∓1(−ξ)

imω1 −W ; (22)

at ω2 is provided by equation (15) with b = 0, and in equation (16) the term with n = 0

R±(ω2) = J0(−β)2κin
ig2|A2|√

2

∑
m

J2
m(−ξ)

imω1 −W
1

i(mω1 ± ω2) −W ; (23)

for ωsm = 2ω1 − ω2, b = 0 in equation (15), and n = ∓2 in equation (16)

R±(ωsm)= J0(−β)2κin
ig2|A2|√

2

∑
m

Jm(−ξ)Jm∓2(−ξ)

imω1 −W
1

i(mω1 ∓ ω2) −W ; (24)

at ωb is provided by equation (17) with b = ±1, and in equation (14) the term with n = 0

R±(ωb) = J±1(−β)

[
−1 + 2κin

∑
m

J2
m(−ξ)

i(mω1 ± ωb) −W

]
; (25)

and the sideband at ωsb = 2ω1 − ωb for b = ±1, and n = 0

R±(ωsb) = J∓1(−β)2κin

∑
m

Jm(−ξ)Jm∓2(−ξ)

i(mω1 ∓ ωb) −W . (26)

6
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Figure 3. Normalized amplitude spectral noise, VH(Ω), obtained by using the expression in equation (29), and the experimental
parameters measured for the results reported in figure 2, considering a small nonzero probe detuning Δ ∼ 2× 3.9 kHz, β = 2 ×
10-2 rad, and the dimensionless amplitude A2 =

√
kBT/mω2

2/2xzpf ∼ 3634. Black curve is the DC contribution (21); orange
curve at ω1, equation (22); dark-green curve at ω2, equation (23); light-green curve at ωsm = 2ω1 − ω2, equation (24); magenta
curve at ωb, equation (25); blue line curve at ωsb = 2ω1 − ωb, equation (26). Black dashed curve is the local oscillator phase, φlo,
which, for our experimental parameters, can be considered � π/2.

The homodyne technique is implemented by mixing on a beam-splitter the reflected field eout with an
intense local oscillator elo eiφlo , and detecting the fields at the output of the beam-splitter, i.e.,
ej = [elo eiφlo + (−1)jeout]/

√
2. The output power are P± = |elo eiφlo ± eout|2/2, and the differential current

ID = S[P+ − P−] = 2S
√
PloPin Re

[
R e−iφlo

]
, (27)

where S is the sensitivity of the photodiodes, and the phase φlo represents the controllable phase difference
between the local oscillators and the reflected field. The local oscillator phase is locked to have zero DC
signal, which turns out to be φlo = arctan

[
Re(RDC)/Im(RDC)

]
. This phase is plotted in figure 3 for our

experimental parameters, showing that it does not deviate from the optimal value of π/2. The error signal,
assuming optimal detection for the local oscillator phase φlo � π/2, is

VH(t) = gTS2
√
PloPin Im [R] , (28)

where gT is the transimpedance gain. This voltage contains the signature of any modulation frequency of the
reflected field, provided that it falls within the bandwidth of the electronic system. The single-sided power
spectral density SW(ω) =

∫
dτ eiωτ 〈VH(t + τ)VH(t)〉t/R0 on a termination resistor R0, provides a

normalized amplitude spectral noise for each well separated frequency, that is

VH(Ω) =

√
SW(Ω)

S0
=

1

2
|R+(Ω) −R∗

−(Ω)| , (29)

with S0 = (gT2S)2PloPin/R0. In figure 3 are reported the amplitude spectral noise at the frequencies of
interest for our experiment.

We notice that for probe detuning Δ = 0, and when the cavity field is weakly modulated at frequency
ω1, that is ξ � 1, the output signal is linear in the displacement

R+(ω1) = −[R−(ω1)]∗ ∼ −ξ

2

2κin

κ

iω1

κ+ iω1
, (30)

and the amplitude spectral noise is

√
SW(ω1)

[
W/

√
Hz

]
=

gTS√
R0

· 2
√
PloPin ·

F
λ0

δx̃(ω1)
[
m/

√
Hz

]√
1 + ω2

1/κ
2

·η, (31)

where F = FSR/2κ, ξ = δx̃(ω1)g1/ω1xzpf, and η = [2κin/κ] × [g1λ0/2FSRxzpf ] ∼ 0.25 × 0.24 ∼ 0.06 for
our setup. The average power falling on each photodiode is approximately Plo/2. The shot noise in the
differential signal has a flat spectrum with spectral density Ssn

PP ∼ 2 × 2�ωLPlo/2, which sets a limit to the
sensitivity of the detection [67, 68]

δx̃(ω1)
[

m/
√

Hz
]
=

1√
2Pin/�ωL

λ0

F
1

η

√
1 +

ω2
1

κ2
∼ 4 × 10−16 m/

√
Hz, (32)
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Figure 4. (a) Ratios T1 of equation (33), orange curve, and T2, light-green curve, as a function of ξ. Filled square symbols
correspond to the data indicated by the areas A in figure 2 for the measurements in frequency domain, and the one reported in
figure 7 for the measurements in time domain, with an estimated ξst

1 � 1.05, which corresponds to qst
1 = ξst

1 ω1xzpf/g1 � 263 pm.
Open square symbols correspond to the data indicated in figure 2 by the areas A′, corresponding to ξA′ � 1.66. (b) Ratios T1ξ

−1,
and T2 normalized to their maximum values, and indicated as N1, orange curve, and N2, light-green curve, respectively. For
ξst

1 � 1.05 estimated in panel (a), and evidenced by the blue dotted line, the attenuations due to the optical readout (as explained
in the text) are N1 � 0.70 and N2 � 0.42, for which the observable displacement is qob

1 = qst
1 N1 � 183 pm. Dot-dashed line

corresponds to the cavity response length, that is the maximum displacement detectable in the linear regime, ξcav � 0.284, as
explained in the text.

and reproduces the shot-noise limited displacement detection filtered by the cavity response, for which the
shot-noise limited sensitivity is not flat in the spectrum (Mizuno’s sensitivity theorem [69]). The cavity
response length in this linear detection regime might be estimated as λ0/2F � 43 pm, which corresponds
to ξcav = 2g1/ω1 · λ0/2Fxzpf � 0.284.

On the contrary, when the excited mechanical mode reaches a limit cycle with large amplitude, that is
for ξ approaching unity, the reflected signal, due to the non-linear response of the cavity, presents a
reduction of the signal of the unexcited mode and the appearance of a sideband at ωsm and ωsb

(see figure 3). In this case any attempt to determine the mechanical displacement from the measured phase
of the output field requires careful attention, also because the calibration tone, which is implemented by
modulation of the input field, is essentially unaffected (see magenta line in figure 3). In general, two main
ratios of the normalized spectral amplitudes VH(Ω), which are independent from β, κin, and from the
coupling term with the second mechanical mode, g2|A2|, describe the non-linear dynamics of the
optomechanical system in terms of the normalized mechanical amplitude of the first mechanical oscillator
ξ: (i) the ratio derived by equation (22) and the product of β and equation (25);
(ii) the ratio derived by equations (23) and (24)

T1 =
VH(ω1) · β
VH(ωb)

, Tsb =
VH(ωsb)

VH(ω2)
. (33)

In panel (a) of figure 4 are reported these ratios that allow us to estimate ξ for our experimental realisations.
In panel (b) the ratios T1(ξ)ξ−1, and T2(ξ) = VH(ω2) · β/VH(ωb) (note that T2 does depend on g2|A2|),
normalized to their maximum values, which are reached for ξ → 0, are shown as N1, and N2, respectively.
By definition, they represent the correction factors that relate the displacement amplitudes detected via the
reflected probe spectrum, to the effective displacements amplitudes. N1, and N2 are equal to 1,
corresponding to the usual linear detection regime, for ξ � 1. In the present case instead, for the results
reported in figures 2 and 7 we estimate ξst

1 � 1.05, N1 � 0.70 and N2 � 0.42. Such analysis allows us to
deduce the effective limit cycle displacement amplitude of the first oscillator to be qst

1 = ξst
1 ω1xzpf/g1

� 263 pm, and the observed limit cycle displacement amplitude qob
1 = qst

1 N1 � 183 pm. This analysis does
not allow us, for the moment, to draw any quantitative conclusion for what concerns the second oscillator.
We will be able to do that in the following section, when we will analyse the experimental time traces. We
anticipate here that also the optical detection of the unexcited oscillator is affected by the nonlinear
response of the cavity, and the complementary analysis in time domain will allow us to determine the
proper correction to the calibration readout N2.

8
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Table 1. Optomechanical parameters for the results reported in
figure 8.

ω1 2π × 230.795 kHz
ω2 2π × 233.759 kHz
ωb 2π × 225.350 kHz
Δ1 2π × 259.350 kHz
Δ2 2π × 3.9 kHz
g1 2π × 0.4225 Hz
g2 2π × 0.6965 Hz
γ1 2π × 1.64 Hz
γ2 2π × 9.37 Hz
κloss 2π × 50.35 kHz
κin 2π × 8.35 kHz
κex 2π × 58.7 kHz
FSR 2π × 1.67 GHz
Ppump 4.25 μW
Pprobe 5.9 μW
λ0 1064 nm

5. Non-linear mechanical dynamics at the onset of synchronization

In contrast to the systems implemented in [55, 57], our high finesse optical system, used for detection, does
not allow us to reveal the effective motion of each membrane independently. However, by using the above
analysis of the reflected spectrum, and the numerical simulations, it is possible to unambiguously infer from
the homodyne detection of the probe beam shown in figure 2 that the dynamics of the two membranes is
characterized in this parameter region by a pre-synchronisation regime. In fact the numerical integration of
equations (1) and (2) with the parameters reported in table 1, which refers to the results of figure 2, also
shows that when the output probe beam exhibits sidebands around the frequency of the fundamental mode
of the first oscillator [see figure 2(a))], the second oscillator has a nonzero amplitude of oscillation at the
frequency of the first oscillator, that is, it starts to synchronize with the first mode. This is emphasised by the
magenta box in panel (b) of figure 5, which shows the numerical simulations of the spectra of the
fundamental mechanical mode of the two oscillators for the experimental parameters of table 1. A more
quantitative description of such pre-synchronization process of the second resonator with the excited first
one, acting as the ‘master’ oscillator, is provided by the synchronization measure [45]

Pθ−(t) =
1

Δt

∫ t+Δt/2

t−Δt/2
cos [θ1(t) − θ2(t)] dt, (34)

where θj(t) = arg[β j(t)], reported in figure 5(c), which shows an increase of the phase anti-correlation
between the two oscillators. The effect is small due to the weak driving regime, but it is nonetheless
unambiguously present.

We are also able to provide a consistent analytical description of this pre-synchronization dynamics of
the two membrane modes starting from the slowly varying amplitude equations (4) and (5). To study the
regime when the first oscillator reaches a limit cycle while the second is not excited, it is convenient to take
ωref = ω1 as a reference in equations (4) and (5), so that Δω1 = 0 and Δω2 = Δω. One can make
quantitative predictions on such a regime assuming that |A1| 	 |A2|,

√
2n̄1. Moreover, in our experiment

the optical noise is negligible and we will not consider the terms associated with ηopt
i (t). With the above

approximations, one can neglect both thermal noise and A2 contributions in equation (4), which becomes

Ȧ1(t)=
[
−γ1 + id1(|A1|)

]
A1(t)=−

[
γeff

1 (|A1|) − iΔωeff
1 (|A1|)

]
A1(t), (35)

where we have made explicit the dependence of d1 on |A1|, and defined Δωeff
1 (|A1|) = −Re[d1(|A1|)], and

γeff
1 (|A1|) = γ1 + Im[d1(|A1|)]. The effective mechanical damping can be cast as

γeff
1 (|A1|) = γ1

[
1 +

g1

γ1|A1|
Im

[
E2

1 Σ1 + E2
2 Σ2

]]
, (36)

where we have used the fact that in the considered regime |Ab
i | � |A1|(gi1/gb

i ), ξj � ξ1 = 2g1|A1|/ω1,
assumed gi1 � g1, and

Σj ≡ Σ(ξ1,κi,Δi) =
∑

n

Jn (−ξ1) Jn+1 (−ξ1)

[inω1 −Wj][−i(n + 1)ω1 −W∗
j ]
. (37)

9
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Figure 5. (a) Numerical simulation of the DSN of the fundamental mechanical mode of the first oscillator for the experimental
parameters of figure 2. After 10 s the pump beam is turned on, and after 25 s increased. (b) Numerical simulation of the DSN of
the fundamental mechanical mode of the second oscillator. While the first oscillator reaches a limit cycle, the second oscillator
starts to present an amplitude at the frequency of the first one, highlighted by the magenta box. (c) Synchronization measure as
defined in equation (34). Phase anti-correlation between the two oscillators increases with the pump beam power.

We note that such approximation implies a regime where the second mode is still dominated by a
thermal dynamics, i.e., pre-synchronized regime; on the contrary, if also the second mode would have
reached a limit cycle, synchronized with the first, the amplitude g2A2 would have not been negligible
anymore with respect to g1A1, and the dynamics would have been governed by the more general equations
(4) and (5) [55, 57]. Equation (35) can be solved by rewriting it in terms of modulus and phase,
A1 = I1 eiφ1 ,

İ1(t) = −γeff
1 (I1) I1(t), (38)

φ̇1(t) = Δωeff
1 (I1). (39)

After a transient these equations yield a steady state with a constant radius of the limit cycle of the first
oscillator, Ist

1 , corresponding in our case of not too strong driving, to the smallest positive root of the
implicit equation γeff

1 (Ist
1 ) = 0, which can be cast as

a|ξst
1 | = −Im

[
E2

1Σ(ξst
1 ,κ1,Δ1) + E2

2Σ(ξst
1 ,κ2,Δ2)

]
, (40)

with ξst
1 = 2g1Ist

1 /ω1, and a = ω1γ1/2g2
1 . As a consequence, at long times, φst

1 (t) � tΔωst
1 with Δωst

1 = Δωeff
1

(Ist
1 ) so that A1(t) � Ast

1 (t) = Ist
1 exp[itΔωst

1 ].
In figure 6 we show the left and right side of equation (40) for the experimental parameters of table 1,

which provides the optomechanical parameters for the results reported in figures 2 and 7. We infer from the
intersection point, which corresponds to find the smallest root of γeff

1 (Ist
1 ) = 0, a value ξst

1 = 1.054, a
steady-state displacement amplitude qst

1 = 2|A1|xzpf = 263.0 pm, and Δωeff
1 = −2π·0.04 Hz, confirming the

value of qst
1 deduced in figure 4. We emphasise once more that, as shown in figure 4, for ξ � 1 the spectral

amplitude of the sideband of the output field is linear with ξ and provides a direct measurement of the
mechanical position coordinate q1; on the contrary for ξ ≥ 1 linearity is no more valid and a proper
correction factor should be considered. In our case, as obtained in figure 4, the theoretical correction factor
is N1 � 0.70, corresponding to an expected observable stationary limit cycle amplitude of qob

1 � 183 pm
fully consistent with the analysis described in the previous section. It is worth noting that, due to the
oscillating behaviour of the Bessel functions, equation (40) may have more than one solution at sufficiently
large power (see below the oblique black dashed line in figure 6), corresponding to the multistability
phenomenon analysed in reference [32] and experimentally verified in reference [34].

We now consider the dynamics of the second oscillator inserting the steady-state solution for A1(t) into
equation (5), which becomes

Ȧ2(t) =
[
−γ2 − iΔω + id2(Ist

1 )
]

A2(t) + id12(Ist
1 )Ast

1 (t) +
√

2γ2β
in
2 (t). (41)
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Figure 6. Steady-state solution for the mechanical displacement amplitude that reaches a limit cycle. The intersection of right
and left side of equation (40) for the parameters of table 1, which are reported as solid blue, and dashed orange curves,
respectively, determines the steady-state value of ξst

1 . We determine ξst
1 = 1.054, and an effective steady-state amplitude

qst
1 = 2|A1|xzpf = 263.0 pm, which confirms the results shown in figure 4. The vertical black dashed, and dot-dashed lines

represent the values for the thermal displacement qth =
√

kBT/m1ω2
1 � 3.365 pm corresponding to ξth � 0.0112, and for the

cavity response length λ0/2F � 43 pm, corresponding to ξcav � 0.284, respectively. The oblique light-green line represents the
left term in equation (40) for the second less coupled mode, for which the equation is not satisfied for the parameters in table 1.
In fact, the threshold power, that is the minimum power for finding a root, equivalently for the optical damping to exceed the
intrinsic one, for the first mode is ∼3 μW, while for the second 6.75 μW. For power larger than 6.75 μW both modes might
establish a limit cycle [57]. The oblique black dashed line indicates the boundary between the region with only one solution and
with multiple solutions, that is the multistability parameter region, which occurs for a pump power larger than ∼667 μW.

Figure 7. (a) and (b) Voltage quadratures, Vxj and Vyj, as a function of time for the fundamental modes of the two oscillators.
(c) and (d) Phase-space distributions associated with the voltage quadratures. (e) and (f) Phase-space distribution of the
calibration tone before and after the pump is turned on. Optomechanical parameters are the same as in table. 1.

The stationary solution can be obtained via Fourier transform and it can be written as

A2(t) =
id12(Ist

1 )

γeff
2 + iΔω̄eff

2

Ast
1 (t) +

√
2γ2

∫ t

0
ds e−(γeff

2 +iΔωeff
2 )sβin

2 (t − s), (42)

where γeff
2 = γ2 + Im[d2(Ist

1 )] is positive, i.e., the second resonator is still damped despite the pump driving
and it is not driven into a limit cycle, Δω̄eff

2 = Δω + Re[d1(Ist
1 ) − d2(Ist

1 )], and Δωeff
2 = Δω − Re[d2(Ist

1 )].
Therefore the first term on the right-hand side of equation (42) is the synchronized component oscillating
at the same frequency of the first master oscillator [see figure 5(b))], while the second term is the thermal
noise component at its natural frequency. This equation describes how the second resonator is driven
towards synchronization with the first resonator, and full synchronization and phase locking is achieved
when the thermal contribution is negligible, i.e., when |d12(Ist

1 )|2Ist,2
1 	 γ2γ

′
2 n̄2 (where we have exploited

the fact that Δω̄eff
2 � Δωeff

2 � Δω). This transition to synchronization is consistent with the theoretical
analysis made in references [5, 45], which, in the regime of not large driving power studied here, predicts an
onset of synchronization with very different limit cycle amplitudes, even in the presence of thermal noise. In
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Figure 8. (a) Observed (orange curve) and effective (blue curve), steady-state amplitudes of the first mode, qst
sm, as a function of

the single-photon optomechanical coupling rate of the first mode g ≡ g1. Solid, and dashed curves represent the solution of
equation (40) for two pump settings: Pprobe = 5.9 μW, Ppump = 4.25 μW, and Pprobe = 16 μW, Ppump = 18.7 μW, respectively.
Filled diamonds, which confirm the results obtained by finding the first zero of equation (40) for the second power setting,
represent the effective steady-state amplitudes obtained as the mean of the amplitudes after the oscillator has reached the limit
cycle, determined by integrating equation (35) [and equation (41)]. Filled circles represent the expected amplitudes for the
experimental parameters given in table 1: qst

sm ≡ qst
1 = 263.0 pm, and qob

1 = 183.0 pm. (b) Observed displacement amplitudes, q2,
as a function of time for the fundamental mode of the second oscillator, and (c) for the first oscillator, q1, which reaches a limit
cycle. Orange and green curves indicate experimental data, and darker curves a convolution over 200 points. The measured
steady-state values are q1 � 184 pm, and qst

2 � 2.1 pm, to be compared with the expected values 183.0 pm, and 2.0 pm,
respectively. The ten blue trajectories in panel (c) represent the dynamics obtained by integrating equation (4) [and equation
(5)]. The dashed horizontal lines in panels (b), and (c), indicate the expected values obtained by using equation (45), and derived
in panel (a), respectively.

the four-dimensional phase space of the mechanical oscillators it manifests itself via a Neimark–Sacker
bifurcation corresponding to the birth of a stable torus around the existing limit cycle [36].

We corroborate such analysis by considering the experimental time traces shown in figure 7. The voltage
Vxj and Vyj [panels (a) and (b)], are the slowly varying quadratures of the voltage signal, integrated over a
bandwidth of 70 Hz–150 Hz around the mechanical frequencies ω1, and ω2, as a function of time. In panels
(c) and (d) are reported the associated phase-space distributions. Panels (e) and (f) show the phase-space
distributions of the calibration tone before and after the pump is turned on, confirming that the calibration
tone is not appreciably affected.

By means of the calibration tone [66], firstly, we determine the displacement amplitudes of the two
oscillators, shown in figures 8(b) and (c), which, before the pump beam is turned on (t < 4 s), show higher
values than the thermal ones. This is ascribed to a slightly blue-detuning of the probe beam. We evaluate
such detuning observing that, for the second mode, green curve in panel (b), the calibrated measured
position standard deviation ΔqΔ2 � 3.50 pm, while the estimated thermal position standard deviation is
Δqth

2 � 3.32 pm, so that
ΔqΔ2
Δqth

2

=
1√

1 + C(Δ)
� 1.054, (43)

where, for almost resonant field [1],

C(Δ) ∼ −
2g2

j E2

γκ

4ωj

(κ2 + ω2
j )2

Δ. (44)

This fact allows us to estimate a small blue detuning of the probe Δ2 � 2π× 3.9 kHz, which is the value
provided in table 1.

Finally we analyse the measured mechanical amplitudes after the pump beam has been turned on
(t > 4 s): the amplitude of the first oscillator increases, while the measured amplitude of the second one
reduces below the thermal value. For the first oscillator, the observed steady-state limit cycle displacement
amplitude is qob

1 � 184 pm, orange curve in figure 8(c). Such value agrees very well with the expected one,
shown as dark-orange filled circle in panel (a) of figure 8. Panel (a) represents the effective steady-state
mechanical amplitudes obtained as solution of equation (40) (blue curves), and the observed one (orange
curves), that is, reduced by the correction factor reported in figure 4, and calculated in section 4. For a given
set of parameters we observe that both the effective and observed steady-state mechanical amplitudes reach
a maximum as a function of g, and then decrease. This result is confirmed by integration of equation (4)
[and equation (5)], including the noise contributions, and finding the steady-state as mean amplitude after
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the oscillator has reached the limit cycle, values which are reported as diamond symbols in figure 8(a). The
effective steady-state displacement amplitude of the first oscillator, qst

1 = 2|A1|xzpf � 262 pm, is also
confirmed by the ten blue trajectories simulated with the parameters of table 1, and reported in figure 8(c).
We note that even the slope of the trajectories follows with accuracy the measured one, implying that our
approach in terms of slowly-varying complex amplitudes of the two oscillators, is effective, and able to
grasp all the features of the non-linear dynamics.

Lastly, we observe that even the dynamics of the second mode is very well described by our model. In
fact, it is evident that after the pump is turned on, the behaviour of the observed q2 [green curve in figure
8(b))] follows the dynamics of the effective mechanical displacement [blue trajectories in figure 8(b))] only
until q1 reaches the limit cycle (after 7 s), and since then the observed displacement differs from the effective
one. An estimation of the effective steady-state amplitude of the second contribution in equation (42) is
provided by Δqth

2

√
γ2/γeff

2 , with

γeff
2

γ2
= 1 +

Im[d2(Ist
1 )]

γ2
= 1 +

g2
2 E2

1

γ2I1g1
Im [Σ1 + ηΣ2] = 1 − γ1g2

2

γ2g2
1

. (45)

We note that, in our case, the effective amplitude is larger than the thermal one by a factor√
γ2/γ

eff
2 � 1.38, that is, there is a small effective driving, although not enough for the appearance of a

limit cycle. Also, from the correction factor N2 � 0.42, we estimate an observed displacement of
qob

2 = ΔqΔ2 ·
√
γ2/γeff

2 · N2 � 3.50 pm ×1.38 × 0.42 � 2.0 pm, in great agreement with the measured value
of 2.1 pm. In conclusion, we observe that even the small effective amplitude displacement of the second
oscillator is strongly affected by the non-linear cavity dynamics, exhibiting a fictitious cooling effect, which
is instead only a manifestation of detection in this nonlinear regime. This is a somehow unexpected effect of
the nonlinear regime in which our system operates. As soon as the amplitude of one of the resonators yields
a frequency modulation larger than the cavity linewidth, all the optically detected motional amplitudes are
nonlinearly modified and appropriate calibration factors Nj must be considered. This occurs also to the
unexcited resonator whose motional amplitude corresponds to a cavity frequency modulation much smaller
than the cavity linewidth.

6. Conclusion

We have presented a detailed experimental analysis of the dynamics of the multimode optomechanical
system introduced in reference [14], formed by a sandwich of two membrane mechanical resonators placed
within a high-finesse cavity, and interacting with a pump and a probe cavity mode. We have focussed onto
the non-linear regime where a blue-detuned pump drives one of the two oscillators into a self-sustained
limit cycle. In the weak driving regime studied here, the system is in a pre-synchronized situation where the
unexcited oscillator has a small, synchronized component at the frequency of the excited (master) oscillator,
which is however dominated by the fluctuating thermal noise component. We find perfect agreement
between the experimental results, the numerical simulations, and an analytical approach based on
slowly-varying amplitude equations. This analytical study allows to derive a full and consistent description
of the displacement detection by the probe beam in this non-linear regime, enabling the faithful detection
of membrane displacements well above the usual sensing limit corresponding to the cavity linewidth. In this
non-linear detection regime, both large and small amplitude resonator motion are transduced in a
nontrivial way by the non-linear response of the optical probe beam.
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