The gut microbiota coevolves with its host, and numerous factors like diet, lifestyle, drug intake and geographical location continuously modify its composition, deeply influencing host health. Recent studies demonstrated that gut dysbiosis can alter normal brain function through the so-called gut-brain axis, a bidirectional communication network between the central nervous system and the gastrointestinal tract, thus playing a key role in the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease (AD). In this perspective, in the constant search for novel treatments in AD, the rational modulation of gut microbiota composition could represent a promising approach to prevent or delay AD onset or to counteract its progression. Preclinical and human studies on microbiota modulation through oral bacteriotherapy and fecal transplantation showed anti-inflammatory and antioxidant effects, upregulation of plasma concentration of neuroprotective hormones, restoration of impaired proteolytic pathways, amelioration of energy homeostasis with consequent decrease of AD molecular hallmarks and improvement of behavioural and cognitive performances. In this review, we dissect the role of gut microbiota in AD and highlight recent advances in the development of new multi-target strategies for microbiota modulation to be used as possible preventative and therapeutic approaches in AD.

Microbiota modulation as preventative and therapeutic approach in Alzheimer's disease

Bonfili, Laura;Cecarini, Valentina;Cuccioloni, Massimiliano;Angeletti, Mauro;Rossi, Giacomo;Eleuteri, Anna Maria
Ultimo
2021-01-01

Abstract

The gut microbiota coevolves with its host, and numerous factors like diet, lifestyle, drug intake and geographical location continuously modify its composition, deeply influencing host health. Recent studies demonstrated that gut dysbiosis can alter normal brain function through the so-called gut-brain axis, a bidirectional communication network between the central nervous system and the gastrointestinal tract, thus playing a key role in the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease (AD). In this perspective, in the constant search for novel treatments in AD, the rational modulation of gut microbiota composition could represent a promising approach to prevent or delay AD onset or to counteract its progression. Preclinical and human studies on microbiota modulation through oral bacteriotherapy and fecal transplantation showed anti-inflammatory and antioxidant effects, upregulation of plasma concentration of neuroprotective hormones, restoration of impaired proteolytic pathways, amelioration of energy homeostasis with consequent decrease of AD molecular hallmarks and improvement of behavioural and cognitive performances. In this review, we dissect the role of gut microbiota in AD and highlight recent advances in the development of new multi-target strategies for microbiota modulation to be used as possible preventative and therapeutic approaches in AD.
2021
Alzheimer's disease; dysbiosis; gut-brain axis; inflammation; microbiota modulation; oxidative stress; prebiotics; probiotics; proteolysis; therapeutic approaches.
262
File in questo prodotto:
File Dimensione Formato  
febs.15571.pdf

accesso aperto

Tipologia: Versione Editoriale
Licenza: DRM non definito
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/441720
Citazioni
  • ???jsp.display-item.citation.pmc??? 24
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 65
social impact