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The gut microbiota coevolves with its host, and numerous factors like diet,

lifestyle, drug intake and geographical location continuously modify its

composition, deeply influencing host health. Recent studies demonstrated

that gut dysbiosis can alter normal brain function through the so-called

gut–brain axis, a bidirectional communication network between the central

nervous system and the gastrointestinal tract, thus playing a key role in the

pathogenesis of neurodegenerative disorders, such as Alzheimer’s disease

(AD). In this perspective, in the constant search for novel treatments in

AD, the rational modulation of gut microbiota composition could repre-

sent a promising approach to prevent or delay AD onset or to counteract

its progression. Preclinical and human studies on microbiota modulation

through oral bacteriotherapy and faecal transplantation showed anti-

inflammatory and antioxidant effects, upregulation of plasma concentra-

tion of neuroprotective hormones, restoration of impaired proteolytic

pathways, amelioration of energy homeostasis with consequent decrease of

AD molecular hallmarks and improvement of behavioural and cognitive

performances. In this review, we dissect the role of gut microbiota in AD

and highlight recent advances in the development of new multitarget strate-

gies for microbiota modulation to be used as possible preventative and

therapeutic approaches in AD.

Introduction

Microbiota is a community of symbiotic microorgan-

isms that can be neutral, beneficial or detrimental to

the host, with important regulatory functions in health

and disease. The human body hosts trillions of

microorganisms (bacteria, archaea, fungi and viruses)

that colonize the skin surface, the respiratory tract,

genitourinary organs and, most importantly, the gas-

trointestinal tract. Approximately 95% of the symbi-

otic organisms of the human microbiome can be found

in the gut (gut microbiota) [1]. Gut microbial

ecosystem consists mainly of bacteria, mostly obligate

anaerobes, fungi and viruses [2]. These diverse groups

of microorganisms play multiple roles in humans, such

as the fermentation of undigested carbohydrates, the

production of short-chain fatty acids (SCFAs) and

other metabolites, the synthesis of vitamins B and K,

the metabolism of important substances (bile acids,

sterols and drugs), and the protection against exoge-

nous pathogens [3]. Bacteroidetes (~ 48%), Firmicutes

(~ 51%), Proteobacteria and Actinobacteria (1%) are
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the main four bacterial phyla present in adults [4]. The

gut microbiota coevolves with humans and regulates

host pathophysiology and health status via symbiotic

interactions [5–8]. An example of this tight relationship

is the crosstalk between microbiota and mitochondria

[9–11], and these subcellular organelles (which evolved

from ancestral bacteria) mediate the transduction of

stress and metabolic signals, and are particularly sensi-

tive to metabolites produced by other microbes associ-

ated with the gut and other mucosa [12].

The gut microbiota communicates with the central

nervous system (CNS) through the bidirectional gut–
brain axis involving different pathways: the neuroim-

mune system, sympathetic and parasympathetic

branches of the autonomic nervous system, and neu-

roendocrine system [13] (Fig. 1). The gut–brain axis is

responsible not only for the proper function of the

digestive tract, but it also represents a biochemical sig-

nalling system linked to the functionality of sympa-

thetic nervous system, endocrine glands and specific

brain regions, such as the hypothalamus and the fron-

tal cortex. Moreover, the gut–brain axis influences

CNS development and behavioural performances in

both normal and pathological conditions.

Although most bacterial metabolites are required for

anabolic and catabolic functions, many of these

compounds have other physiological roles. The gut

microbiota synthetizes neurotransmitters such as c-
aminobutyric acid (GABA), noradrenaline and dopa-

mine, modulates systemic immune cells, produces

metabolites like SCFAs, metabolizes essential amino

acids like tryptophan and activates the secretion of the

nerve growth factor (NGF), the glial-derived neu-

rotrophic factor (GDNF) and the brain-derived neu-

rotrophic factor (BDNF) with consequent implications

in neurodegenerative disorders [14–16]. In particular,

BNDF plays a crucial role in the normal function and

survival of neurons in mature peripheral and central

nervous system [17]. Interestingly, germ-free mice

showed a decreased expression of BDNF in the hip-

pocampus, at both protein and mRNA levels, associ-

ated with impaired cognition [18,19].

Bacterial fermentation of indigestible carbohydrates

in the colon produces SCFAs, metabolites implicated

Fig. 1. Gut–brain axis. Schematic representation of the bidirectional communication network between the gut microbiota and the brain.

Principal molecular mediators in the nervous system (green arrows), immune system (blue arrows) and endocrine system (pink arrows) are

reported. In detail, gut bacteria produce metabolites like SCFAs and process essential amino acids like tryptophan triggering the secretion of

the nerve growth factor (NGF), the brain-derived neurotrophic factor (BDNF) and the glial-derived neurotrophic factor (GDNF) and the

synthesis of neurotransmitters such as c-aminobutyric acid (GABA), noradrenaline and dopamine. Bacterial LPS stimulates TLR4 thus

modulating systemic immune cells. Microglia cells are activated and polarized to the pro-inflammatory (M1) phenotype, resulting in the

production of cytokines and chemokines like IL-1b, IL-6, IL-12, TNF-a and CCL2. Differently, SCFAs producing bacteria favour the anti-

inflammatory M2 phenotype, with the secretion of IL-10 and TGF-b. Moreover, SCFAs stimulate endocrine cells of the gastrointestinal tract

to synthetize neuroactive compounds like ghrelin, leptin GIP and GLP-1 that exert neuroprotective effects and regulate important metabolic

functions.
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also in neurotransmission, since they modulate the syn-

thesis of several neurotransmitters regulating behaviour

and cognition [20]. Acetate, propionate and butyrate

are the most abundant gut bacterial metabolites that

can act either as substrates for host metabolism or as

signalling molecules. In particular, butyrate and its pro-

tonated form, butyric acid (pKa = 4.82), exist in differ-

ent parts of the gastrointestinal tract (stomach:

1.5 < pH < 3.5; intestine: 5.5 < pH < 7.4), where both

forms exert beneficial health effects, improving food

digestion and nutrient absorption, downregulating the

proliferation of pathogenic microflora and favouring

the colonization of anti-inflammatory bacteria [21].

Specifically, systemic administration of butyrate

determines an antidepressant-like behavioural response

[22] and butyric acid, as well as valeric acid and propi-

onic acid, was shown to successfully counteract the

conversion of Ab peptides to neurotoxic aggregates

in vitro [23].

The gut microbiota exert a fundamental role in the

digestion and absorption of amino acids that are

important not only in protein synthesis, but also in the

production of bioactive molecules that regulate key

signalling pathways and metabolic pathways of the

host [24]. Dysregulation of amino acid homeostasis

can contribute to AD pathogenesis. In fact, changes in

glutamate metabolism in AD brain consequently alter

GABA concentrations thus affecting neural function-

ing. GABA is produced from glutamate metabolism

by different bacterial species, mainly lactic acid bacte-

ria [25,26]. It is the major inhibitory neurotransmitter

in the brain that regulates adult brain function, synap-

tic plasticity, and cortical adaptation and reorganiza-

tion thus representing an important mediator through

which bacteria can modulate brain chemistry [27].

Altered concentrations of this neurotransmitter were

detected in several conditions, including epilepsy [28]

and schizophrenia [29], and dysfunctions of the GABA

system were implicated in the pathophysiology of sev-

eral chronic neurological diseases [30].

Changes in methionine, tryptophan, tyrosine and

purine metabolism pathways were observed in both

mild cognitive impairment (MCI) and AD subjects

[31]. Interestingly, tryptophan is an essential amino

acid largely found in meats, dairy products, fruits and

seeds. It is not only absorbed through the intestinal

epithelium to enter the blood circulation, but also

directly and indirectly metabolized by the gut micro-

biota into several compounds with an active role in

gut–brain axis [32]. It is the precursor of several

metabolites, most notably kynurenine and serotonin

[33]. Kynurenine can cross the blood–brain barrier

(BBB) [34] and, once in the brain, it is the precursor

of neuroactive glutamatergic compounds, including the

neuroprotective kynurenic acid. Serotonin, a neuro-

transmitter active both in the central nervous system

and in the gut, plays an important role in maintaining

mood and cognition [35]. Alterations in the levels of

serotonin can be associated with the onset of gastroin-

testinal and mood disorders, and tryptophan dysregu-

lation is linked to detrimental conditions both in the

brain and in the gastrointestinal tract [36].

Microbiota and related metabolites regulate BBB

permeability. Among them, SCFAs can access the

BBB via the bloodstream and can regulate its integrity

through the upregulation of tight junction proteins

[37]. Interestingly, the lack of gut microbiota is associ-

ated with increased BBB permeability and altered

expression of tight junction proteins. Braniste et al.

demonstrated the tight communication between gut

microbiota and BBB that initiates during gestation

and propagates throughout life. They showed that fae-

cal transfer from mice with pathogen-free gut flora

into germ-free mice or treatment of germ-free mice

with bacteria that produce SCFAs decreased the per-

meability of the BBB and upregulated the expression

of tight junction proteins [38].

The composition of the microbiota loses diversity

and the abundance of beneficial bacteria decreases with

ageing. This alteration directly and indirectly influences

mitochondria functionality and energy production in

intestinal cells, reducing the integrity of the intercellular

junctional apparatus and increasing the translocation

of bacterial products (principally lipopolysaccharide,

LPS). This condition favours the so-called ‘inflammag-

ing’, which is strongly associated with numerous age-re-

lated diseases, whereas a healthy microbiota represents

a key condition for longevity [25,39].

Moreover, dietary changes, antibiotic exposure and

infections impair intestinal homeostasis promoting a

condition known as dysbiosis [15], during which

altered gut microbiota composition can damage the

normal function of the intestinal barrier and increase

intestinal permeability. Consequently, neuroactive

compounds and gut microbial metabolites can reach

areas of the central nervous system that regulate cogni-

tion [25]. Dysbiosis is observed in neurodevelopmental

diseases such as autism and in neurodegenerations

such as Huntington’s disease, Parkinson’s disease and

AD [40]. Current research is trying to gather new

knowledge on the underlying mechanisms.

In the following sections, the impact of dysbiosis on

gut–brain axis in AD is described and recent advances

in the identification of multitarget strategies for micro-

biota modulation to counteract the onset and progres-

sion of AD are summarized.
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Alzheimer’s disease

Alzheimer’s disease (AD) is the most common neu-

rodegenerative disorder in the elderly and is a major

challenge for the healthcare system given the impact it

has on both economy and society. It is the main cause

of dementia, and it is characterized by loss of neurons

in the hippocampus and cerebral cortex, shrinkage of

the cortex, enlargement of ventricles, resulting in the

progressive decline in cognitive function. Memory

impairment accompanied by visual space dysfunction

and sleep deprivation was also linked to AD progres-

sion [22]. Key molecular hallmarks of the disease are

the extracellular amyloid beta (Ab) plaques and the

intraneuronal neurofibrillary tangles (NFT) composed

of hyperphosphorylated tau protein (Fig. 2).

Plaques are extracellular deposits of amyloid pep-

tides deriving from the amyloid precursor protein

(APP), a type I membrane protein. APP was consid-

ered a good target for therapeutic interventions in the

early treatment of AD. APP can undergo nonamy-

loidogenic cleavage process mediated by a-secretase
and c-secretase that generates a soluble APP fragment

(sAPPa) and a membrane-bound C-terminal fragment

of APP (aCTF). Alternatively, APP can be cleaved by

b-secretase and c-secretase releasing two major

fragments, sAPPb and a C-terminal fragment located

in the membrane (bCTF). Further cleavage of bCTF
results in the production of Ab peptides ranging from

37 to 43 amino acid in length, with Ab(1-40) and Ab
(1-42) being the most dominant and neurotoxic

[41,42]. Ab monomers form oligomeric structures that

can further aggregate into regular fibrils. According to

the Ab oligomer hypothesis, small soluble Ab oligo-

mers are considered more neurotoxic than insoluble

fibres or amyloid plaques [43].

Defective proteolysis is another important contribu-

tor to AD pathogenesis, because it favours the accu-

mulation of detrimental aggregates. In addition, it may

also be secondary to accumulation of aggregates that

can act as inhibitors for cellular proteolytic machiner-

ies, mainly the ubiquitin–proteasome system (UPS)

and autophagy. The UPS is the major intracellular

degradation system, responsible for the removal of

short-lived, misfolded and defective proteins [44], and

proteasome inhibition impairs both APP processing

and Ab production [45]. Autophagy includes degrada-

tion pathways that finally transport their targets to

lysosomes, acidic membrane-surrounded compartments

containing hydrolytic enzymes involved in the intracel-

lular breakdown of long-lived proteins, organelles and

substrates with limited access to catalytic chamber of

Fig. 2. Schematic representation of cerebral modifications in Alzheimer’s disease. AD is characterized by loss of neurons in the

hippocampus and cerebral cortex, shrinkage of the cortex, enlargement of ventricles, resulting in the progressive decline in cognitive

function. The principal AD molecular hallmarks are the extracellular amyloid beta plaques and the intraneuronal neurofibrillary tangles

composed of hyperphosphorylated tau protein. SEM micrographs for neuronal deposition of amyloid plaques and neurofibrillary tangles are

from Meyer et al. [194] and Itoh et al. [195], respectively. M.R.I. of the brain is from Ledig et al. [196].
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the proteasome, such as larger aggregates [46]. Lysoso-

mal enzymes, particularly cathepsin B and cathepsin

L, can interfere with APP processing, thus altering Ab
formation [47]. Ab deposition and removal are finely

regulated by the UPS and autophagy [48–51]. Impair-

ment of proteolysis, which is typical of AD neurons,

favours the accumulation of harmful Ab structures,

which in turn alter both proteasome and autophagy

functionality [52]. Failure of autophagy–lysosome-me-

diated proteolysis in AD brain leads to a massive

accumulation of autophagic vacuoles and lysosomes in

dystrophic neurites. Vacuoles contain incompletely

digested proteins, including toxic autophagic sub-

strates, ubiquitinated proteins and Ab, indicating the

importance of targeting autophagy to ameliorate neu-

ropathology and cognitive deficits in AD [53]. Regard-

ing UPS, some authors considered the proteasome a

potential target in AD therapy because this multicat-

alytic protease complex regulates the intracellular con-

centration of both presenilins 1 and 2, and/or their

presenilinase-derived C-terminal maturation fragments,

thereby modulating both a- and b/c-secretase-derived
products APPa and Ab(1-40) and Ab(1-42). Based on

the amyloidogenic hypothesis, proteasome activators

would enhance presenilin degradation and lower Ab
peptide secretion [54]. Later, deficiencies of the amy-

loidogenic hypothesis were identified and a major role

of tau in the development and progression of AD

emerged [55]. Failure of proteasomal- and autophagy-

mediated clearance of tau and its aggregates leads to a

progressive neurofibrillary degeneration in AD [56,57].

Nontoxic approaches to restore both UPS and autop-

hagy represent an important challenge to achieve Ab
and tau proteins correct balance.

The proteasome system is also responsible for the

clearance of oxidized proteins [58,59]. Oxidative stress

is one of the mechanisms through which Ab neuro-

toxic peptides and tau protein cause impaired synaptic

plasticity, neuroinflammation, neuronal and synaptic

loss, and neurotransmitter imbalance in AD [60], con-

tributing to the observed behavioural disturbances

[61]. The key role of oxidative stress in the onset and

progression of AD is largely documented: inadequate

antioxidant defence systems, high O2 consumption, the

presence of excitotoxic amino acids and high iron con-

tent promote the production of unstable reactive oxy-

gen and nitrogen species (ROS and RNS) in the brain

[62,63]. ROS and RNS easily react with proteins,

lipids, carbohydrates and nucleic acids, causing oxida-

tive modifications that finally result in dysfunctions of

cellular processes [64,65], among them impaired pro-

teasome-mediated proteolysis [66]. Numerous evi-

dences have described a crosstalk between proteasome

and autophagy, with the overexpression of APP corre-

lating with a reorganization of the cellular proteolytic

machineries and with an increased oxidative status

[48]. Also tau and tau aggregates are degraded by both

the proteasome [67] and lysosomes [68].

Alzheimer’s disease subjects are characterized by a

compromised blood–brain barrier (BBB) that is perme-

able to neurotoxic components as well as pathogens

and favours neuroinflammatory and neurodegenerative

processes [69]. Both genetic and environmental factors

can be involved. Apolipoprotein E variant 4 (APOE4)

was found to be responsible for the increased risk of

AD due to a leaky BBB. Individuals carrying APOE4

have a breakdown of the BBB in the hippocampus

and parahippocampal gyrus, the regions of the brain

responsible for memory and cognition. This condition

is already detectable in individuals with MCI [70]. The

increased permeability of BBB is also favoured by a

dysregulated microbiota and causes the penetration of

microbiota-derived products from the blood into the

brain. In particular, gut microbes can excrete complex

and immunogenic factors like LPSs and amyloids

which may leak from the gastrointestinal tract and

accumulate at the systemic and brain level contributing

to the production and release of pro-inflammatory

cytokines and reactive oxygen species, both responsible

for AD neuroinflammation [71].

Neuroinflammation plays a major role in the patho-

genesis of AD. A cascade of molecular events involves

the activation of microglia, primary immune cells of

CNS. Dysbiosis and intestinal infection trigger sys-

temic immune response and cerebral inflammatory

processes in AD [72]. Toll-like receptors (TLRs), which

are present throughout the intestinal mucosa and in

CNS, are fundamental in transducing molecular patho-

genic patterns from the gut to the brain by modulating

microglia response. TLRs are involved in commensal

colonization, homeostasis maintenance and intestinal

barrier integrity [73]. Ab binding to TLRs was demon-

strated to trigger an inflammatory process in the gut

and the brain, contributing to the development of AD

and other neurodegenerative diseases. Although all

TLRs are highly expressed in intestinal epithelial cells,

they have been also detected in CNS: in particular,

TLR1-9 encoding mRNA is present in microglia;

TLR2 and TLR3 are expressed in astrocytes and

oligodendrocytes, in association with TLR1 and TLR4

[74]. Besides, certain TLRs have been also found in

neurons [75].

Under physiological conditions, the CNS-resident

macrophages constituting microglia ensure neuronal

health by secreting trophic factors such as BDNF [76],

by playing a role in synaptic pruning [77,78] and by
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exerting phagocytic activity towards senescent cells [79]

and toxic forms of Ab [80]. Aberrant microglia activity

or age-related decline of phagocytosis can cause

inflammatory processes in CNS leading to cognitive

impairment [81]. It was demonstrated that microglia

activation by Ab requires CD14 (lipopolysaccharide

receptor), TLR2 and TLR4 [82]. These receptors are

overexpressed in 3xTgAD mice [83] as well as in the

brain of AD patients [84]. Contrasting studies indicate

that microglia can exert a protective role in AD

[85,86], or can induce inflammation [87] and accelerate

the disease [88]. Since microglia and blood-derived

macrophages share many membrane determinants and

possess phagocytic activity [89], peripheral monocytes

can enter the BBB and, upon differentiation, can exert

an essential role for reparative and regenerative func-

tions in AD [90].

TLR4, localized on the surface of microglia, con-

tributes to induce amyloid phagocytosis [91]. Ab is

highly hydrophobic and can induce innate immune

responses like those triggered by LPS. Furthermore, it

has been shown that acute or chronic administration

of LPS into the brain ventricles of rats and mice

results in gliosis, cytokine production, increased Ab
concentrations and occasional cognitive deficits [92].

Glial activation due to LPS administration was

thought to mimic some features of AD [93]. In this

perspective, several works were conducted to directly

stimulate TLR4 or to administer TLR4 agonists to

enhance the activation of monocyte-derived macro-

phages and microglia, and to increase the natural

clearance of amyloid deposits. Active phagocytosis of

Ab(1–42) deposits in the brain of AD patients can be

obtained through the natural stimulation of the innate

immune response by stimulating TLR4-mediated

phagocytosis, or the active immunization through the

administration of adjuvanted Ab(1-42).

Alteration of gut microbiota in
Alzheimer’s disease

Gut microbiota can influence brain activity [19], and

changes in relative abundance of taxa are documented

in cognitively impaired subjects. In detail, a compara-

tive analysis of the microbiome between healthy sub-

jects and AD patients showed a lower prevalence of

bacteria synthesizing the anti-inflammatory and neuro-

protective SCFA butyrate and higher levels of pro-in-

flammatory taxa [94]. Older adults showed increased

abundance of the pro-inflammatory bacteria Escheri-

chia/Shigella, whereas individuals with evidence of

amyloid deposition on PET imaging exhibited

decreased abundance of the anti-inflammatory bacteria

Eubacterium rectale [95]. Bacterial taxa correlate also

with cerebrospinal fluid (CSF) biomarkers of AD

pathology. Brandscheid et al. [96] observed an

increased abundance of Firmicutes with a significant

decrease in Bacteroidetes in 5xFAD mice, a model with

severe amyloid pathology. Additionally, an increase in

Clostridium leptum group was observed in AD mice

[96]. Consistently, a study from Vogt et al. revealed

reduced richness and abundance in alpha diversity and

beta diversity in AD patients compared to healthy sub-

jects. They evidenced differences in bacterial abun-

dance such as decreased Firmicutes, increased

Bacteroidetes and decreased Bifidobacteria in the

microbiome of AD participants [97]. Colonization of

Bacteroides fragilis was linked to exacerbation of AD

along with increasing Ab plaques in AD mice [98].

Interestingly, Helicobacter pylori was largely studied

not only for its pro-inflammatory properties, but also

for its ability to stimulate Ab deposition [99] as well as

tau hyperphosphorylation [100]. A recent comparative

microbiome study confirmed a decreased microbial

diversity in human AD patients with respect to mild

cognitive impairment (MCI) patients and healthy con-

trols. The study highlighted a progressive growth in

the abundance of Gammaproteobacteria, Enterobacteri-

ales and Enterobacteriaceae from healthy controls to

AD subjects, increased glycan biosynthesis and meta-

bolism in AD and MCI patients and decreased

immune system-related pathways in AD patients.

Among Firmicutes, Lachnospiraceae, Clostridiaceae

and Ruminococcaceae were major SCFAs producers

found to be lacking in AD patients [101]. Zhang et al.

observed in APPSwe/PS1E9 transgenic mice a signifi-

cant alteration of gut microbiome on the level of phy-

lum, genus and species with age. Changes in the

diversity and the composition of the faecal microbiota

and SCFAs in these mice correlated with alterations of

important metabolic pathways, which are associated

with amyloid deposition and ultrastructural abnormali-

ties in AD mouse intestine [102].

Microbiota modulation influences
multiple molecular mechanisms
through the gut–brain axis

The modulation of intestinal homeostasis triggers mul-

tiple mechanisms, among them the increase of anti-

inflammatory microbial metabolism. As abovemen-

tioned, the gut microbiota is an important source of

LPS and amyloid peptides. LPS stimulates TLR4 via

CD14. Bacterial amyloid proteins help bacterial cells

to aggregate in biofilms and to resist destruction by

physical or immune factors [103,104] and induce CNS
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inflammation in different ways. Despite the differences

in the sequence, bacterial amyloid peptides share simi-

larities in their tertiary structure with CNS amyloids

[105,106]. The exposure to bacterial amyloid proteins

in the gut can cause priming of the monocytes/macro-

phages system, leading to endogenous production of

neuronal amyloid in the brain [104]. Microglia can rec-

ognize and phagocyte Ab by receptor-mediated endo-

cytosis that activates signalling pathways and cytokine

production in a ligand-dependent manner [107]. In

AD, microglia are activated and polarized to the pro-

inflammatory (M1) phenotype. M1 microglia produce

cytokines and chemokines (IL-1b, IL-6, IL-12, TNF-a,
CCL2) and express NADPH oxidase generating reac-

tive oxygen and nitrogen species. M1 microglia also

express MHC-II, integrins (CD11b, CD11c), costimu-

latory molecules (CD36, CD45, CD47) and Fc recep-

tors. Differently, M2 microglia produce anti-

inflammatory cytokines (IL-10, TGF-b), growth fac-

tors (IGF-1, FGF, CSF1) and neurotrophic factors

(nerve-derived growth factor (NGF), BDNF, neu-

rotrophins, glial cell-derived neurotrophic factor

(GDNF)) [108].

Scientists totally agree on the fundamental neuro-

modulatory role of SCFAs. These well-recognized

anti-inflammatory bioactive bacterial metabolites pro-

vide cells (including nervous cells) with energy; they

are involved in cell signalling systems by influencing

the intracellular levels of potassium, and directly

affect brain neurochemistry by regulating the expres-

sion of the gene coding for tryptophan hydroxylase,

the key enzyme in the serotonin biosynthesis pathway

[109]. SCFAs interfere with the activity of DNA

repair enzymes by decreasing the activity of chromo-

some histone deacetylases (HDACs); for example, the

HDAC inhibitor 4-phenylbutyrate was investigated

for its ability to restore dendritic spine density in the

hippocampus of Tg2576 mice, coupled with decreased

Ab load and tau phosphorylation, producing positive

effects on cellular protein homeostasis [110], with the

main disadvantage of a high therapeutic dosage

required (up to 15 g/day) [111]. Undoubtedly, micro-

biota modulation strategies that favour SCFAs pro-

ducing bacteria represent a feasible and sustainable

approach to ameliorate intestinal ad neuronal home-

ostasis.

Interestingly, SCFAs are able to stimulate endocrine

cells of the gastrointestinal tract to synthetize neuroac-

tive compounds like histamine, serotonin, c-aminobu-

tyric acid, b-alanine, peptide YY, leptin and glucagon-

like peptide-1 (GLP-1) [112-114]. Gut peptide hor-

mones have a documented role in AD as they regulate

energy homeostasis and food intake and modulate

nervous functions like learning and memory [115-117].

For example, ghrelin and leptin are neurotrophic hor-

mones [115,118]. Specifically, ghrelin affects both glu-

cose and lipid metabolism, and it influences

mitochondrial respiration and exerts neuroprotective

effects and therefore is involved in the aetiopathogene-

sis of neurodegenerative disorders, representing a link

between metabolism and neurodegeneration [119]. In

AD, memory and learning impairment is closely asso-

ciated with the age-related decline of plasma ghrelin

concentration [120]. Conversely, plasma leptin concen-

tration is negatively correlated with Ab levels due to

its direct regulatory effect on c-secretase [121]. Inter-

estingly, treatment with leptin reduced both Ab and p-

tau levels in AD animal models [122,123]. Also, GLP-

1 and glucose-dependent insulinotropic polypeptide

(GIP) act as neuroprotective hormones. Several studies

described GLP-1 ability to protect cultured neurons

from oxidative damage and Ab plaque formation, and

the capability to improve synaptic plasticity in mice

[124,125]. Additionally, increased plasma levels of gut

hormones such as GLP-1, leptin, ghrelin and GIP par-

tially restore hippocampus functions in AD subjects

[119,126]. In this framework, the use of GIP analogues

has emerged as promising strategy in AD treatment

[127,128].

Since in many cases of early-onset AD, Ab peptides

originate from mutations in genes encoding APP and

presenilins (1 and 2), past and present therapies

focused on the improvement of a-secretase activity to

promote the nonamyloidogenic pathway, and on the

modulation of proteolytic systems in charge of the

clearance of amyloid deposits. The UPS and autop-

hagy are the main cellular proteolytic systems [48–51],
and there is a mutual effect of harmful Ab structures

on both proteasome and autophagy functionality [52].

Both autophagy [53] and UPS have been identified as

attractive therapeutic targets in AD, not only to

degrade presenilins and lower Ab peptides production

[54], but also for the clearance of tau and its aggre-

gates [56,57]. Drug-based pharmacological modulators

of proteolytic machineries are detrimental because of

their toxicity, whereas natural product-derived

approaches represent nontoxic options to restore both

UPS and autophagy in several pathologic conditions

including AD. A partial but significant recovery of

both proteolytic pathways was obtained through

microbiota modulation in AD transgenic mice, evi-

dencing another important molecular target to achieve

Ab and tau proteins correct balance. Moreover, autop-

hagy induction can mediate the inhibition of Wingless-

related integration site (Wnt) signalling, which affects

differentiation of the CNS [129] and causes the
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reduced expression of fibroblast growth factor 9

(FGF9) in the CNS, thus explaining the improvement

of behavioural performances in probiotic treated ani-

mals [130]. The crucial role of the proteasome in the

clearance of oxidized proteins has been described

[58,59]. A proper modulation of gut microbiota can

directly and/or indirectly influence the oxidative bal-

ance in the CNS, increasing the degradation of oxi-

dized proteins and positively interfering with

antioxidant systems [131]. Interestingly, probiotics oral

administration ameliorated oxidative status in trans-

genic AD mice by improving the functionality of

antioxidant enzymes and decreasing oxidized proteins,

lipids and DNA also through the activation of sirtuin-

1 (SIRT-1) [132], a deacetylase enzyme with estab-

lished neuroprotective action, able to lower ROS levels

and promote cell survival [133].

Gut microbiota modulation inevitably impacts key

metabolic functions such as glucose homeostasis which

is impaired in AD. Defective insulin signalling strongly

contributes to brain metabolic impairments in AD.

For example, deficient cerebral amount of insulin

growth factor I (IGF-I) is associated with compro-

mised Ab clearance [134] and reduced proteolysis of

oxidized proteins by the proteasome [135]. The levels

of both IGF-I and its receptor significantly decrease in

the hippocampus and somatosensory cortex of aged

mice, causing age-related changes in the brain [136].

Moreover, tau hyperphosphorylation occurs in mice

having abnormal brain insulin levels [137]. Specific gut

microbial alterations can indicate a signature of the

pathology. In this perspective, personalized interven-

tion, using, for example, probiotics and prebiotics, rep-

resents a successful revolutionary approach to restore

the optimal concentrations of healthy promoting

bacteria that contribute to normalize host glycaemic

response and insulin sensitivity.

Figure 3 summarizes the multiple molecular and

metabolic mechanisms that are influenced by gut–brain
axis modulation. Studies on animal models and human

subjects show that modifications of gut microbiota

reflect changes in genes involved in inflammatory and

neuronal plasticity processes, with a positive impact on

neuronal function [138,139].

Novel therapeutic strategies: diet-
based approaches and faecal
transplantation

As previously described, ageing, infections, unhealthy

dietary habits and lifestyle behaviours can alter gut

microbiota composition and diversity favouring the

onset and progression of neurodegenerative disorders

including AD. Since dysbiosis is strictly correlated with

alterations of intestinal permeability, dysfunctions of

BBB and neuroinflammatory processes [140,141],

strongly participating in the development of AD, gut

microbiota can also represent a key to tackle AD.

Specifically, in the absence of a definitive treatment for

AD, with most therapies simply delaying the loss of

cognition and memory, recent studies have focussed

on the role of the human microbiome in regulating

multiple neurochemical pathways through the gut–
brain axis and on looking for new therapeutic

approaches for microbiota modulation [142–144]. A

diet rich in saturated fat, carbohydrates and highly

processed foods may have detrimental effects on health

contributing to the reduction of microbiota diversity,

neuroinflammation and cognitive impairment. On the

other hand, healthy dietary patterns show

Fig. 3. Schematic representation of

metabolisms and pathways affected by gut

microbiota modulation. Microbiota

modulation targets multiple molecular

mechanisms to ameliorate AD condition,

among them inflammatory and oxidative

processes, proteolytic pathways, gut–brain

axis, immune system components and

energy metabolism.
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neuroprotective properties and can be beneficial to

host cognitive health. On this regard, the Mediter-

ranean diet is rich in many components considered

helpful for AD subjects, among them vegetables,

legumes, fruits, cereals and a high intake of unsatu-

rated fatty acids and polyphenols [145]. In addition,

oral bacteriotherapy has been recently identified as an

accepted practice for the prevention and treatment of

gastrointestinal infections [146] and inflammatory con-

ditions [147,148]. Beneficial effects of lactic acid bacte-

ria and bifidobacteria in CNS-related diseases have

been reported [149–154]. Diet-based therapeutic inter-

ventions include probiotics administration through

specific supplements or probiotics enriched foods,

foods rich in prebiotics, supplementation with

polyphenols, calorie restriction and consumption of

digestion-resistant fibres.

Besides dietary interventions, faecal microbiota

transplantation (FMT) is another promising therapeu-

tic option against AD that targets intestinal microbes,

which involves the transfer of stool from a healthy

donor into the gastrointestinal tract of a patient in

order to restore diversity and function of the microbial

population. This approach is currently considered a

valid treatment for recurrent Clostridioides difficile

infections, and it was successfully tested in intestinal

conditions including inflammatory bowel disease

(IBD), diarrhoea, irritable bowel syndrome (IBS) and

constipation, and is now being investigated for its

possible application in extraintestinal conditions such

as metabolic and neuropathological conditions (Fig. 4)

[155]. FTM is considered a safe therapeutic procedure

with minor and transient side effects due to the intro-

duction of live microorganisms and associated metabo-

lites. However, it is of extreme importance to properly

screen the donor and the faecal material in order to

avoid contamination of the patient with pathogenic

microorganisms that could lead to serious infections.

In the following sections, we report recent findings

on the use of these new microbiota-modulating strate-

gies.

Preclinical studies in animal models

Acting on the microbiota through specific strategies

such as intervention with beneficial microbes or diet

modifications could be considered a promising preven-

tative and therapeutic approach in AD. Particularly,

single- or multistrain probiotic preparations turned out

to be successful examples of oral treatments. These

formulations are usually made of Lactobacillus and

Bifidobacterium species since members of both groups

have been used extensively in promoting human health

and are classified as GRAS (generally regarded as safe)

for human consumption [156]. We recently reported

on the beneficial properties of SLAB51, a formulation

of lactic acid bacteria and bifidobacteria able to modu-

late microbiota in 3xTg-AD mice increasing the

Fig. 4. Strategies used to modulate gut

microbiota composition. Diet-based

strategies and faecal transplantation are

considered promising approaches to

regulate function and composition of gut

microbial population, favouring the

abundance of beneficial bacterial groups.
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relative abundance of Bifidobacterium spp. and

decreasing Campylobacterales, bacterial groups differ-

ently involved in the regulation of inflammatory path-

ways. These changes in microflora composition

together with enriched gut concentration of SCFAs

and increased plasma levels of neuroprotective gut

peptide hormones contributed to counteract cognitive

decline through a reduction of Ab aggregates and

brain damages, and a partial restoration of impaired

neuronal proteolytic pathways [130]. SLAB51-medi-

ated microbiota modulation also mitigated oxidative

stress by activating SIRT1-dependent mechanisms and

restored glucose homeostasis in 3xTg-AD mouse brain

[132,157]. ProBiotic-4, another formulation containing

B. lactis, L. casei, B. bifidum and L. acidophilus, signif-

icantly improved cognitive functions and attenuated

intestinal and BBB injury in aged SAMP8 mice

through inhibition of both TLR4- and RIG-I-mediated

NF-jB signalling pathways and inflammatory

responses [158]. The mixture exerted a modulation of

SAMP8 mouse microbiota with a marked decrease of

Proteobacteria (phylum), Pseudomonas (genus) and

Lachnospiraceae_NK4A136_group (genus) and a signifi-

cant lower Firmicutes/Bacteroidetes ratio than vehicle-

treated SAMP8 mice [158]. A probiotic mixture con-

taining Lactobacillus acidophilus, L. fermentum, Bifi-

dobacterium lactis and B. longum administered for

8 weeks to Ab(1-42)-injected rats improved spatial

memory and learning deficits and decreased oxidative

stress by modifying microbiota [159]. Manipulation of

the gut microbiota with a combination of Lactobacillus

helveticus R0052 and Bifidobacterium longum R0175

significantly decreased serum and hippocampus levels

of pro-inflammatory cytokines, alleviated hippocampal

apoptosis and attenuated the detrimental effect of LPS

on memory through BDNF protein expression in LPS-

induced rats [160,161]. Short-term administration of

Bifidobacterium breve strain A1 prevented cognitive

decline in AD mice, with a reduction in the immune

response and neuronal inflammation. However, the

authors did not detect a marked effect on intestinal

microbiota composition, indicating the involvement of

other mechanisms in the probiotic final effect, such as

the gut–brain communication via stimulation of the

vagus nerve [162]. The effects of bacteria on cognition

can also depend upon the type of strain that is admin-

istered. On this regard, Savignac H.M. et al. demon-

strated that treatment with B. longum 1714 improved

the ability of learning and memory in an anxious

mouse model, whereas B. breve 1205 had little or no

positive impact on memory [163,164]. A recent article

introduced the possibility for probiotics to be used

also in combination with traditional AD drugs to

potentiate their beneficial effects. In details, L. plan-

tarum augmented the therapeutic efficacy of meman-

tine in APP/PS1 mice by remodelling the intestinal

microbiota, inhibiting the synthesis of trimethylamine-

N-oxide (TMAO), a gut microbial metabolite able to

promote AD progression, and reducing clusterin levels.

Moreover, a 12-week treatment with memantine in

combination with L. plantarum ameliorated cognitive

deterioration, decreased hippocampus Αb levels, and

protected neuronal integrity and plasticity [165].

Several studies on microbiota and probiotic interac-

tions involve Drosophila melanogaster, which is consid-

ered an excellent model for microbiota research in

view of its easily manipulated microbiome, high-

throughput screening capabilities, low costs, and fast

reproduction and is currently used to investigate the

mechanisms at the basis of AD [166,167]. The adminis-

tration of Lactobacillus plantarum DR7 to an AD-in-

duced Drosophila melanogaster model rescued the

rough eye phenotype and restored the gut microbiota

diversity with a significant reduction in Wolbachia’s

relative abundance, positively correlated with neurode-

generative disorders, accompanied by an increase of

Stenotrophomonas and Acetobacter [168]. A symbiotic

preparation containing three metabolically active pro-

biotics and a polyphenol-rich prebiotic increased sur-

vivability and motility, rescuing Ab deposition and

acetylcholinesterase activity in a transgenic humanized

Drosophila melanogaster model of AD through the

effect on gut–brain axis components and on PPARc
activity [169].

Numerous studies also highlighted that dietary inter-

ventions with specific nutrients or combination of

nutrients may act on gut microbes and their metabo-

lites to ameliorate AD neuropathology. Diet supple-

mentation with prebiotics was demonstrated to be a

possible strategy to attenuate AD symptoms by modu-

lating the microbiota. Prebiotics are dietary supple-

ments used as food source by the microflora that offer

a health benefit to the host regulating gut microbiota

composition. Inulin, a well-studied prebiotic com-

pound, enhanced systemic metabolism and decreased

hippocampus inflammatory gene expression modulat-

ing gut microbiome composition in E4FAD mice even

before the development of Ab [170]. Treatment of

APP/PS1 transgenic mice with fructooligosaccharides

(FOS), commonly found in fruits and vegetables, chan-

ged microbiota composition and activated the GLP-1

pathway with consequent amelioration of cognitive

deficits and pathological changes. In details, FOS

reduced the groups of Proteobacteria, associated with

dementia and immunological reactions and inflamma-

tion, of Helicobacteraceae and Desulfovibrionaceae and
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reversed the decrease of Lactobacilli observed in

untreated transgenic animals [171]. Oligosaccharides

from Morinda officinalis administered to APP/PS1

transgenic mice significantly improved memory, brain

tissue swelling and neuronal apoptosis and downregu-

lated the expression of Ab(1-42). These molecules were

able to regulate the composition and metabolism of

the gut microbiota in treated transgenic mice [172].

Syeda et al. demonstrated that the ingestion of bioac-

tive food composed of nopal, soy protein, chia seed

and turmeric reduced the amount of pro-inflammatory

bacteria simultaneously increasing the anti-inflamma-

tory ones, including A. muciniphila and F. prausnitzii,

in 3xTg-AD mice [173]. This variation in microflora

exerted numerous beneficial effects on the main patho-

logical markers of AD such as a better cognitive

outcome, decreased amyloid aggregates and hyper-

phosphorylation of tau, diminished oxidative damage,

neuroinflammation, synaptic and metabolic alterations

[173]. Sesamol, an antioxidant lignan from sesame oil,

was able to reshape gut microbiome and improve the

generation of SCFAs in high-fat diet rats. The effect

on the gut was then accompanied by an ApoE-depen-

dent improvement of cognitive deficits, anxiety, and

synapse ultrastructure and inhibition of Ab accumula-

tion [174]. Treatment with jatrorrhizine, a main com-

ponent of Coptidis rhizome, a traditional Chinese

herbal, alleviated learning and memory deficits,

reduced the levels of Ab plaques in the cortex and hip-

pocampus of APP/PS1 mice. Jatrorrhizine administra-

tion clearly affected mouse microbiota modulating the

relative abundance of the most predominant phylum

Firmicutes and Bacteroidetes in transgenic mice [175].

Also calorie restriction (CR) was effective in promot-

ing neuroprotective effects and health benefits in dif-

ferent animal models, being also able to counteract

AD symptoms [176-178]. Cox et al. recently reported

on the effects of CR on the microbiome of Tg2576

mice during ageing, showing that CR can rescue age-

and APP-related microbiome alterations and prevent

the enrichment of microbes associated with AD age-re-

lated cognitive decline [98].

Besides oral administration of bacterial strains or

nutrients, faecal microbiota transplantation (FMT)

from a healthy donor to a patient or diseased animal

is an alternative microbiota-targeted intervention,

which represents a potentially attractive therapeutic

approach against AD. A recent article by Kim et al.

focused on this strategy, further contributing to eluci-

date the intricate relationship among the gut, blood

and brain axis and AD. They demonstrated that fresh

faecal matters oral transfer of healthy wild-type mice

in ADLPAPT mice for 16 weeks and faecal microbiota

transplantation in antibiotics-pretreated ADLPAPT

mice for 4 weeks alleviated Ab deposition, tau pathol-

ogy, reactive gliosis and memory impairment in these

transgenic AD mice. Interestingly, FMT successfully

reversed abnormalities in intestinal macrophage activ-

ity and circulating blood inflammatory monocytes in

the ADLPAPT recipient mice [179]. 16S ribosomal

RNA sequencing analyses revealed that FMT reversed

the alterations observed in microbial composition of

APP/PS1 transgenic mice such as the abnormal enrich-

ment in Proteobacteria, Verrucomicrobia, Akkermansia

and Desulfovibrio, and the downregulation of Bac-

teroidetes and Alloprevotella. Modulating transgenic

mouse microbiota and the associated SCFAs produc-

tion, FMT improved cognitive deficits, decreased phos-

phorylation of tau protein and the levels of amyloid

peptides, and ameliorated synaptic plasticity [180].

Cognitive dysfunctions and a- and b-diversity indices

of pseudo germ-free mice (in detail, C57BL/6 mice

receiving broad-spectrum antibiotics dissolved in

drinking water for 14 consecutive days) were deeply

ameliorated upon FMT from senescence-accelerated

mouse resistant 1 (SAMR1) mice, but not from

SAMP8 mice, further confirming that improving

unhealthy gut microbiota may provide valid treatment

for AD [181]. Interestingly, FMT associated with calo-

rie restriction improved glucose tolerance, insulin sen-

sitivity and lipid metabolism and regulated immune

system in mice, indicating positive implications in

metabolic disorders [182] and suggesting larger thera-

peutic potential, also in AD, considering that glucose

intolerance and impairment of insulin metabolism are

strictly connected with a higher risk of developing AD

[183].

Human clinical studies on microbiota
modulation

An increasing number of nutritional interventions to

modify gut microbiota are documented in humans,

principally involving old adults with memory com-

plaints and healthy volunteers, also considering that

AD, insulin resistance, diabetes, obesity and cardiovas-

cular disease are strongly interconnected [152] and that

there is an urgent need to establish preventative strate-

gies. Specifically, it was reported that chronic supple-

mentation with Bifidobacterium breve A1 restored

cognitive functions in old people with impaired mem-

ory [184]. Conversely, in some cases, experimental

groups receiving placebo, instead of probiotics,

obtained significantly better memory scores [185]. Nag-

pal et al. identified significant differences between the

gut microbiome of MCI patients and cognitively
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normal subjects, highlighting specific gut microbiome

signatures that are associated with MCI and that cor-

relate with cerebrospinal fluid levels of Ab, total tau

and phosphorylated tau [186]. In the same study, a

modified Mediterranean ketogenic diet influenced the

abundance of specific bacterial taxa (increasing the

abundance of Enterobacteriaceae, Akkermansia, Slack-

ia, Christensenellaceae and Erysipelotriaceae and reduc-

ing Bifidobacterium and Lachnobacterium) and SCFAs

(increasing propionate and butyrate) consequently

improving AD biomarkers in the cerebrospinal fluid of

treated MCI patients [186].

Interestingly, a randomized, double-blind and con-

trolled trial conducted by Akbari and collaborators

evidenced that chronic supplementation with milk

enriched with L. acidophilus, L. casei, B. bifidum and

L. fermentum improved learning and memory in AD

patients. Probiotics positively influenced the levels of

malondialdehyde and high-sensitivity C-reactive pro-

tein, improved insulin resistance, pancreatic beta cell

secretion, and metabolic status with respect to controls

[187].

Another study reported that AD patients supple-

mented with a multispecies probiotic formulation influ-

enced gut bacteria composition decreasing faecal

zonulin concentrations and increasing Faecalibacterium

prausnitzii. In these patients, enhanced kynurenine

serum concentrations influenced tryptophan metabo-

lism and stimulated the immune system [188].

No data on FMT in human AD patients were found

but results from ongoing clinical trials are expected in

the near future. Although animal models represent

great opportunities to reveal new insights into micro-

biota–host interactions, they cannot fully nor accu-

rately reproduce the human phenotype and there is an

urgent need for additional human clinical studies with

well-defined targets, and standardized protocols and

outcome measures.

Conclusions

Alzheimer’s disease is the most diffuse incurable

dementia, and the identification of a definitive thera-

peutic intervention is a major challenge of our time.

Dysbiosis was demonstrated to be a relevant risk fac-

tor for AD [101], with lifestyle, geographical location,

drug assumption and dietary habits continuously being

capable of modifying the gut microbiota composition.

Diet rich in saturated fat and simple carbohydrates

increases the risk of dementia and a suboptimal diet is

associated with a more severe impaired cognition in

AD [189]. Differently, a high quality diet like the

Mediterranean diet correlates with better cognitive

status in healthy people with reduced risk of develop-

ing MCI and AD [190]. In this context, the possibility

to modulate the composition of gut microbiota using

probiotics, prebiotics and other dietary intervention

represents a promising and sustainable approach. Diet-

ary interventions are generally safe and more advanta-

geous than drug-based therapies since probiotics,

prebiotics and synbiotics are cheap and easy to handle,

thus reducing the burden also for AD patient care-

givers. Similarly, FMT was described as a promising

procedure, although some adverse effects were docu-

mented in infections from Clostridium difficile [191] or

ulcerative colitis [192], indicating that intersubject vari-

ability must be considered and that a long-term fol-

low-up is necessary to assess the risks and benefits.

Moreover, standardization of methods used for micro-

biota analysis (sampling, preservation and storage of

samples, and analytic procedures) will facilitate com-

parison between studies, enhancing the reproducibility

[193]. The rapid advances of metabolomics and infor-

matics will help in managing the vast databases deriv-

ing from ongoing and short-coming microbiota

studies.

Successful results depend upon the optimization of

different factors including proper combinations of bac-

terial strains and nutrients, time of treatment, disease

stage therefore the presence of specific procedures and

guidelines are necessary to enhance effectiveness of gut

microbiota modulation.

The identification of AD-specific signatures in gut

microbiota together with a better knowledge of the

molecular mechanisms triggered upon microbiota

modification will contribute to identify multiple per-

sonalized interventions for decreasing AD risk, delay-

ing the onset of the pathology, and counteracting the

appearance or improving the clearance of AD hall-

marks.
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