The dissipative properties of an optical cavity can be effectively controlled by placing it in a feedback loop where the light at the cavity output is detected and the corresponding signal is used to modulate the amplitude of a laser field which drives the cavity itself. Here we show that this effect can be exploited to improve the performance of an optomechanical heat engine which makes use of polariton excitations as working fluid. In particular we demonstrate that, by employing a positive feedback close to the instability threshold, it is possible to operate this engine also under parameters regimes which are not usable without feedback, and which may significantly ease the practical implementation of this device.
An optomechanical heat engine with feedback-controlled in-loop light
G. V. De Angelis;S. Zippilli;D. Vitali
2019-01-01
Abstract
The dissipative properties of an optical cavity can be effectively controlled by placing it in a feedback loop where the light at the cavity output is detected and the corresponding signal is used to modulate the amplitude of a laser field which drives the cavity itself. Here we show that this effect can be exploited to improve the performance of an optomechanical heat engine which makes use of polariton excitations as working fluid. In particular we demonstrate that, by employing a positive feedback close to the instability threshold, it is possible to operate this engine also under parameters regimes which are not usable without feedback, and which may significantly ease the practical implementation of this device.File | Dimensione | Formato | |
---|---|---|---|
Abari_2019_New_J._Phys._21_093051-published.pdf
accesso aperto
Tipologia:
Versione Editoriale
Licenza:
PUBBLICO - Creative Commons
Dimensione
1.69 MB
Formato
Adobe PDF
|
1.69 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.