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Abstract

The dissipative properties of an optical cavity can be effectively controlled by placing it in a feedback
loop where the light at the cavity output is detected and the corresponding signal is used to modulate
the amplitude of a laser field which drives the cavity itself. Here we show that this effect can be
exploited to improve the performance of an optomechanical heat engine which makes use of polariton
excitations as working fluid. In particular we demonstrate that, by employing a positive feedback close
to the instability threshold, it is possible to operate this engine also under parameters regimes which
are not usable without feedback, and which may significantly ease the practical implementation of this
device.

1. Introduction

Heat engines convert thermal energy into work. A quantum heat engine uses a quantum system as working fluid.
The practical realization of these devices is interesting as platforms for the experimental investigation of the
thermodynamics of the quantum world and of non-equilibrium systems [1, 2].

Optomechanics [3] describes systems, which range from the nanoscale to macroscopic sizes, where the
interaction between light and mechanical objects is exploited for enhanced metrology [4], and to explore the
limits of quantum physics [5, 6]. Thermal machines based on optomechanical systems have been proposed and
analysed in different configurations [7—15]. A specific example [7-9] makes use of hybridized polariton
excitations as working fluid. This engine works in the strong optomechanical coupling regime where the normal
modes of the system are superpositions of optical and mechanical excitations. This regime is in general not easily
achievable and in some cases is inhibited by detrimental nonlinear processes, such as optical bistability or
thermorefractive effects, which hamper the ability to carefully control the coupled dynamics of the systems. It
has been shown [16] that feedback-controlled light [16—19] can be employed to significantly ease the onset of
strong coupling in an optomechanical system. This suggests [20] that the feedback analysed in [19] can be used to
enhance the efficiency of the quantum heat engine proposed in [7].

In this article we analyse the effect of feedback-controlled light on the performance of the polariton-based
optomechanical heat engine discussed in [7-9]. We show that, with the aid of feedback, this engine can operate
efficiently also when the system is not in the strong coupling regime and for parameters for which, in the absence
of feedback, the engine is not functional.

The article is organized as follows. In section 2 we introduce the model of the optomechanical system driven
by a feedback-controlled pump field. In section 3 we review the functioning of the quantum heat engine
introduced in [7-9]. Then, in section 4 we discuss the effect of feedback on the performance of this device. In
section 5 we present a variant of the engine which exploits the upper polariton mode as working fluid. Finally,
section 6 is for the conclusions.

©2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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Figure 1. The feedback loop: a quadrature of the field, transmitted through a Fabry—Pérot cavity with a movable end mirror, is
detected viahomodyne detection at phase 0,, and the corresponding photocurrent is used to modulate the input field [19].

2. The model

In this work we consider an optomechanical device similar to the one discussed in [19], composed of an optical
cavity with a moving end mirror placed within a feedback loop where the light transmitted through the cavity is
detected and the corresponding signal is used to modulate the amplitude of the laser field which drives the
system, see figure 1. In details, one resonant mode of the optical cavity at frequency w, and with decay rate x,, is
coupled to a vibrational mode of the mirror, at frequency w,,,, which dissipates its energy at rate y << w,,,. The
laser is at frequency wy and is detuned by A, = w; — w, form the cavity resonance. We describe the system in
terms of the standard linearized model for the fluctuations of the optical and mechanical variables about the
corresponding average values [3] (this also implies that the cavity frequency includes the shift due to the
optomechanical interaction). Specifically, assuming that the feedback does not affect the average laser intensity
(this can be realized using a high-pass feedback response function which cuts the low-frequency components of
the photocurrent [19]), the annihilation and creation operators for optical and mechanical excitations fulfil the
quantum Langevin equations

G =—(k —iA)a —iG(b + b) + 2, tiny ey
b=—(y+ iwnb — iG@ + a") + 27 bin, ()

where G is the linearized coupling strength, I;in (t) is the noise operator for the mechanical resonator which

describes thermal noise with 7, thermal excitations according to the correlation function (Ein (t) IS,Z, ) =
(1 + ny) 6@t — t'), dy (¢) is the input noise operator for the cavity field which can be decomposed in terms of the
noise operators d;, 4D () and ag (2)(t) associated with the left and the right mirror respectively, as

V2r a0@) + 2R, aP(1)

2K¢

din () = (3)
with k; and &, the corresponding decay rates, such that k. = 1 + K,.In turn, the noise operator 4, 4D (t) canbe
decomposed as the sum of the operator without feedback plus an additional term &(r) due to the feedback

allt) = Al(nl)o(t) + &(¢). The input noise operators all )O(t) and 42 (t) describe vacuum fluctuations and are

characterised by the correlation functions (a l(nl)o(t) Al(nl)OT(t’)) = 6(t — t)and (a2 (t) ﬁ(m(t’)} =6(t —t).
The feedback term & (¢) depends on the feedback photocurrent [19]. In particular, if the feedback gain Zp 18
constant over a sufficiently large band of frequencies around the mechanical resonance, it can be approximated
as b(r) = Za i (t — 7o), such thatitis proportional to the photocurrent in (1) atan earlier time determined by

the feedback delay time 74, [19, 20], so that
al(6) = a0 + gy in(t — o). (4)

The photocurrent resulting from the homodyne detection of the field at the output of the second mirror is
expressed as [19]

() = Ja X0 + JT— 13 R (D), )
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where g, is the phase of the local oscillator, 7, is the detection efficiency, X, (¢) is an operator representing
additional noise due to the inefficient detection, which satisfies the relation (X, (1) X, (")) = 6(t — t),and

NG i A O AQ)Eon s . .
X(fu‘tl’)ﬂ,(t) = e g2 (1) + e 42 1(t) is the detected field quadrature at phase 6g,, with corresponding
annihilation operator determined by the standard input—output relation [21]

asa(t) = 2ry a(t) — a2 (). 6)

According to equations (4) and (5) this operator is calculated at the delayed time ééﬁ)t t — T) and, in the regime of

large detuning with respect to the optomechanical coupling constant and cavity decay rate, i.e. |Ap| > G, K, itis
convenient to rewrite it as a product of two terms (a slowly varying one and fast oscillating one) as do (t — 73) =
Aou (t — ) €2~ Whenever the delay time is much shorter than both the characteristic time of the
interaction 1/G and the decay time of the cavity 1/ 2k, 1i.e. 7p, < 1/G, 1/2k,, we can ignore the delay time
dependence of the slow part d,,(t — 73,) and then rewrite the output operator as

ﬁout(t - be) = ﬁout(t) e_iAPt eiApTﬂ) = dout(t) eiAPTﬂJ- (7)

In this situation the delay-time dependence of the photocurrent in equation (4) can be approximated as a phase
factor such that

in(t — ) = yng (€79 a0 + e ad (1) + J1T—n; X0, (8)

where we have introduced the global phase ¢ = g, — A, 7.
By using equations (6), (4)and (8) and assuming ¢ = 0 (this can be achieved by properly adjusting the value
of O, depending on the value of detuning), we can rewrite the equation for the cavity operator (1) as

Q) = —(5n, — 18y) 4(1) + (ke — K 47(0) = iG [B() + B (O] + 2k, dinan (D), ©)
where we have introduced the feedback-modified cavity decay rate
Ky = K — 28q JMak1k2 (10)

and the corresponding noise operator

. 1 . R ~ o o
Gin (1) = T {2k a0 + 2k a2(1) — go 2001 [e 94D () + ea P ()]
Efp

+ &2 — n)r1 X (1)), (11)

which describes additional effective thermal noise characterised by the correlation relations

(A 5 (8) Ain g () = nope 0(t — 1), (12)
(Ain,p (1) Ain,p(t)) = 0, (13)
with the feedback-mediated number of thermal excitations defined as
2
Ke — K
Nopt,fb = Q (14)
NikcRb

This shows that, the feedback-controlled system behaves as an effective optomechanical system with modified
cavity decay rate rg,, under the effect of additional noise with a finite number of thermal excitations 71, ¢, and of
an additional parametric driving term with strength . — kg, (see equation (9)). The values of both xg, and 1, ,
are controllable via the feedback gain g, according to the relations (10) and (14). This allows one to operate the
same system under different parameter regimes [16—19]. In particular when the feedback is operated close to its
instability threshold, namely when the effective cavity decay rate becomes very small (kg — 0), also a weakly
coupled system may exhibits the typical features of strongly coupled systems such as normal mode splitting [ 16].

3. The polariton-based optomechanical heat engine

References [7—9] describe a quantum heat engine which makes use of polariton excitations in an optomechanical
system (without feedback) as working fluid. This device requires strong optomechanical coupling and resolved
sideband regime w,,, G > K, for its functioning. And works at red detuning, where the laser frequency is lower
than the cavity frequency so that the optical and mechanical mode can exchange coherently their excitations.
Only in this regime the hybridised polariton excitations (the excitations of the normal modes of the system)
become relevant. The engine focuses on the lower polariton mode and realises an Otto cycle formed by two
adiabatic and two isochoric processes. Specifically it works as follows (see figure 2). The lower polariton
frequency plays the role of the volume of the working fluid (similar to other single oscillator engines [1, 2]) and it
can be controlled via the laser detuning. This is the central tool used to operate the engine through the four
strokes of the cycle. At large detuning the lower polariton is phonon-like and it is in thermal contact with the hot
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Figure 2. Frequency of the two polaritons (upper w, and lower wg) of the optomechanical system as a function of the cavity detuning
Apinthe red-detuned case A, < 0 (the optomechanical coupling strength is G = 0.05 w,,). The dashed curves correspond to the
frequencies of the non-interacting modes. In the plot we have indicated the position of the four nodes of the Otto cycle operated on the
lower polariton. The strokes from node 1 to 2 and from 3 to 4 correspond to the adiabatic processes. The strokes from node 2 to 3 and
from 4 to 1 take place at constant detuning and correspond to the isochoric processes.

mechanical thermal bath (see figure 2). A fast change of the detuning brings the laser closer to the cavity
resonance, passing through the red mechanical sideband, until the polariton becomes photon-like and comes
into contact with the cold (zero temperature) optical bath. This variation of the detuning realizes the first
adiabatic process from 1 to 2 (see figure 2). Hence it has to be sufficiently fast in order to avoid dissipation.
However, at the same time, it has to be sufficiently slow in order to avoid non-adiabatic transitions to the upper
polariton mode. This means that the duration 7 of this process must fulfil the conditions 1/G <« 71 <« 1/k,
(note that the linearized optomechanical coupling is assumed constant during the cycle; this can be achieved by
properly controlling the pump intensity during the adiabatic processes [7-9]). After the adiabatic process, the
detuning is kept fixed at the value closest to the cavity resonance for a time 7, > 1/, until the lower (photon-
like) polariton thermalizes with the optical reservoir realising the first isochoric process. This process has to be
sufficiently short (7, < 1/7)in order to avoid mechanical dissipation of the upper(phonon-like) polariton
which should not contribute to the variation of the system energy during the cycle. The second adiabatic process
is realized by sweeping back the detuning to the initial value over a time 75 = 7 so to guarantee the adiabaticity
of the process. Now, the lower polariton is again phonon-like and in the second isochoric process it thermalizes
with the thermal mechanical bath, over a time 74 > 1/+. The upper polariton, instead, does not change
significantly its number of excitations during the full cycle.

4. The feedback-enabled heat engine

A critical requirement in this device is the ability to realise the adiabatic processes which needs a sufficiently large
difference between G and &, This is the regime of strong coupling that, although reached in a few systems
[22,23], is not straightforward to achieve, and in certain cases it is inhibited by the onset of detrimental
nonlinear effects [16]. As discussed in [16], the feedback that we have described above seems particularly fit for
this purpose, and can be exploited to ease the realisation of this engine. In particular, on the one hand the
feedback loop enables one to reduce the cavity bandwidth and to bring a system into the strong coupling regime
even if naturally it is weakly coupled; on the other hand it adds extra noise to the cavity, corresponding to a finite
number of thermal photonic excitations #1, #,. In order to realize the heat engine that works on the lower
polariton, the cycle should work between a cold photonic reservoir and a hot phononic reservior. This means
that the Otto cycle that we have discussed can be effective as long as 114 4, < 14, which implies (see

equation (14)) that kg, cannot be too small. Furthermore, a difference between the model of [7, 8] and the
feedback-controlled system introduced in section 2 is the additional parametric driving in the latter (see
equation (9)). However when the system is in the resolved sideband regime its effect is very small. Hence,
neglecting the parametric term we can perform an analysis similar to the one discussed above also in the case of
feedback. And we can state that, when one utilises feedback, the engine can work efficiently when the duration of
the four strokes fulfil the following set of relations
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1 1 1
— K BK —<K 0K =<K 7 (15)
G Kb ¥
and
nopt,ﬂ) < Nih- (16)

If the cycle operates optimally with ideal adiabatic passages, then it realises a perfect Otto cycle where, in the
adiabatic processes, the system exchanges energy with the environment in terms of work without transferring
heat, instead, in the isochoric processes the system exchanges only heat and thermalizes with the environment
(see appendix C for a definition of heat and work that applies to this system). In this case the heat and the work in
each stroke is given by the difference between the system’s energy at the beginning and at the end of each stroke
AE;_; = E; — E;(fori,j = 1,2,3,4), where, denoting with the label A the upper polariton and with B the lower
one, the system energy is given by E = 7 (wya Ny + wpNp), withw,and N, (for x € {A, B}) the frequency and
the number of polariton excitations respectively. The polariton A is initially photon-like and its frequency is
given by the initial cavity detuning wy ~ |A,|, with corresponding number of excitations Ny ~ 1y, .. The
polariton B, instead, is initially phonon like with frequency wp ~ w,, and Ng ~ ny, excitations. At the end of the
first adiabatic process A becomes phonon-like, at frequency ws ~ w,,,, and B photon-like with a frequency close
to the corresponding cavity detuning wp ~ |A¢|. Then, in the isochoric process the polariton B thermalizes with
the feedback-mediated optical bath, while A should remain with its initial number of excitations. Then, in the
second adiabatic process the polariton frequencies return to their initial values, and finally in the second
isochoric process, polariton B returns to its initial value of excitations (note that during an ideal cycle the number
of excitations of the polariton A should remain constant). Hence ideally the changes of energy (and the
corresponding heat Q and work W) in the four strokes, are

Wis,=AE _; ~ ﬁ(lAfl Nih + Wm ”opt,ﬂ)) — i (W i + 1A nopt,fb) <0,

Qaz = AE2—>3 ~ fl/lAfl Nopt,fb — ﬁ|Af| ng < 0,

Wiy = AE3_4 ~ 71 (W, Hopt,ib + [A] nopt,fb) - ﬁ(|Af| Nopt,fo + Wm ”opt,fb) >0,

Qi = AE4~>1 ~ Jwy, Ngy — Ty Nopt,fb > 0. (17)
The negative work in the first stroke indicates that the work is performed by the system, while the positive heat in

the fourth stroke indicates that the heat is absorbed by the system. The efficiency of the cycle is given by the ratio
1N = —Wiot/ Qaps between the total work W, = Wj ., + W;_,, and the absorbed heat Q,ps = Q4. 1, that s,

Q4~>1 Wm

n (18)
Note that during the adiabatic processes part of the work is also done by and on the polariton A (respectively in
the first and second adiabatic process). However, since the number of excitations does not change the net
contribution to the total work due to polariton A is zero.

4.1. Results

A more accurate estimate of the efficiency and of the work performed by this engine can be computed by
focusing on the steady state properties of the lower polariton B alone at the end of each stroke, but still assuming
perfect adiabatic processes and constant population of the upper polariton throughout the whole cycle. This
allows to better estimate the expected performance of the engine by taking into account also the effects of the
optomechanical interaction at large and small detuning. Specifically, equations (2) and (9) can be used to
evaluate the steady state correlation matrix Cg of the system (see appendix A for details); moreover, the
populations and the frequencies of the polariton mode B can be estimated by transforming the correlation
matrix to the polariton bases, which determines the normal modes of the system Hamiltonian as discussed in
appendix B. This allows to estimate the energy associated to the polariton B at the beginning and end of each
stroke (Epj = /awpj Npjforj = 1,2, 3,4)and to estimate the corresponding work and heat (such as

Wit ~ —(Epy — Ep,1 + Ep4 — Ep3)and Qups ~ Ep; — Ep4). The corresponding results are reported in
figure 3. They show that the optimal performance of the engine are achieved at small A, and G[7, 8]. In this
regime however our estimate are likely to be inaccurate. In fact, on the one hand, at vanishing G the time for the
adiabatic passage needs to be extremely long (longer then the dissipation time), and on the other hand at small
A, the effect of the parametric term can become important (in fact at very small Athe system is unstable (see
appendix C) as indicated by the white areas in figure 3). In order to address this issue more rigorously we have
analysed the full dynamics of the system.

An in-depth study of the efficiency of the engine is achieved by solving the quantum Langevin equations (2)
and (9), and computing the time evolution of the energy exchanged between the system and the environment in
terms of heat and work as discussed in appendix C. Specifically, these quantities can be expressed in terms of the
correlation functions of the system operators, the dynamics of which can be computed by standard techniques

5
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Figure 3. (a) Thermal efficiency n7and (b) total work W, done by the engine (operated on the lower polariton) as a function of the
smallest detuning Arand the optomechanical coupling strength G, evaluated in terms of the steady-state energy corresponding to the
lower polariton mode at each node of cycle, assuming perfect adiabatic processes and constant excitations of the upper polariton
mode. The white areas indicate the parameter regime at which the system is unstable (see appendix C). The dots indicate the
parameters used for the results in figures 5 and 6. The other parametersare A; = —3w,,, 2, = 0.1w,,,, 27 = 10™*w,,, and ny, = 300.
The feedback is set in order to achieve the effective cavity decay rate 2kq, = 0.015w,,,, corresponding to an effective number of thermal
photons gy 1 ~ 8 (see equation (14)).

A,(t)

100 150 200 250 300
t [in unit of w;']

Figure 4. Time evolution of the detuning A, The vertical dashed lines indicate the end and the beginning of each stroke. The last
stroke is not shown completely because it is very slow due to the small mechanical damping rate «. During the last stroke the A,
remains constant.

(see appendix A). Hereafter we report and discuss the result of this numerical analysis when the cavity detuning
A, is changed in time, in order to realise the Otto cycle, according to the relation

A/—A,'

T ) AL <<
A) t1<t<t2
Ay =1" b (19)
=Tt -t)+ A h<t<h
ti—t
A, B<t<t

In details (see figure 4), in the first stroke the detuning is changed linearly from the initial value A;to A Then it
is kept constant at the value Ay In the third stroke it changes linearly back to the initial value. And finally, in the
last stroke, it remains constant at the value A;. The duration of each stroke is Ti=t—ti, forj = 1,2,3,4.

In figure 5 we report the results evaluated for an optomechanical coupling G of the same order of the cavity
decay rate r.. In this case the engine described in [7, 8] has low efficiency. Here we utilize feedback to effectively
reduce the cavity linewidth and reach the regime of strong coupling [16] and significantly enhance the
performance of the engine. Figure 5(a) shows that the lowest polariton B plays the main role in the dynamics of
the system, and we can ignore the dynamics of the polariton A as the variation of its excitations is relatively small
during each stroke of the Otto cycle. At the beginning of the process, the number of excitations of the upper and
lower polariton modes, N4 and N, are almost equal to the number of photons N, and phonon N, respectively.

6
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Figure 5. (a), (b), (d), (f) Time evolution of the populations of the polariton modes, Ny (red line) and Ny (green line), and of the
photonic (N,, blue line) and phononic modes (N}, orange line) during a loop of the engine cycle (with initial state given by the system
steady state at the initial detuning) with (a), (b) and without (d), (e) feedback. (a) and (d) show the dynamics in the first three strokes.
(b) and (d) show a longer time scale that highlight the slow thermalization in the fourth stroke. Corresponding energy change (blue),
heat exchanged (red) and work performed (green) during each stroke of the cycle. The duration of each stroke is 7, = 75 = 35w,,',

7, = 135w, and 74 = 20/~. The other parameters are as in figure 3.

The numbers of polaritons N, and Ny remain almost constant during the first adiabatic passage (while at the
same time the phonon and photon numbers exchange their values). In the second stroke the photon-like
B-polaritons decay due to cavity dissipation (the oscillations of the photon and phonon populations are due to
the optomechanical coupling). In the third stroke the polariton mode B comes back to its phonon-like character,
and then it slowly thermalizes to its initial population. The final thermalization is shown in plots (b) and (e)
because it is very slow due to the small mechanical damping rate . This behaviour is consistent with that of an
Otto cycle as discussed in section 4 [7, 8]. It is also worth to notice that the population of polariton A remains
small throughout the whole cycle, indicating that it plays a minor role in the energy exchanges and hence in the
functioning of the engine. Figure 5(c) shows the changes in energy, work and heat in each stroke. As expected for
an Otto cycle, the first and third strokes (the adiabatic passages) are mainly associated with work production,
while heat is exchanged mainly in the isochoric processes (second and fourth strokes). In particular, the system

7
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Figure 6. (a)—(c): Efficiency of the quantum engine; (d)—(f): total work; (g)—(i): absorbed heat during the cycle, versus kg, and 71 (= 73),
evaluated by computing the system time evolution as discussed in appendix C. The plots in the second column report the values of
efficiency (b), work (e) and heat (h) as a function of kg, for the value of 7, (= 73) indicated by the vertical lines in the corresponding
contour plots. The green and blue lines correspond to the values that maximize efficiency and work respectively. The red lines
correspond to the quantities calculated considering stationary states as in figure 3. The plot in the third column report the values of
efficiency (c), work (f) and heat (i) as a function of 7; (= 73), for the value of kg, indicated by the horizontal lines in the corresponding
contour plots. The other parameters are the same as those used in figure 5.

produces work in the first stroke, while it absorbs heat in the fourth stroke. The marginal imperfections of
figure 5(c) (finite heat exchanges in the first and third stroke) are due to non-ideal adiabatic processes [20]. As a
comparison we plot in figures 5(d)—(f) the corresponding results achievable with the same system when the
feedback is off. In this case the cavity dissipation is too large and the population of the polariton mode B
decreases significantly in the first stroke, the work performed is strongly reduced and the corresponding thermal
efficiency is much lower.

Itis instructive to analyse the performance of the engine in terms of its efficiency, performed work and
absorbed heat as a function of the two most critical time scales of the engine dynamics, namely the effective decay
rate kg, and the duration of the adiabatic processes 77 (=73). These results are shown in figure 6. The contour
plots highlight that although maximum efficiency and maximum work are not achieved for the same parameters
(see the dots in the contour plots), the corresponding values are relatively stable and the results achieved when
is maximum are very close to those corresponding to maximum — W,.. The work is maximized at intermediate
values of both kg, and 71, as a compromise between the opposite requirements described by the hierarchy
relations (15). The white areas in the contour plots indicate the parameters in which the engine is not functional.
Namely for these parameters the total work become positive (indicating that the work is done on the system and
not by the system). Plots (b), (c), (e), (f), (h) and (i) represent the values of 1), Wy, and Q,ps, along the vertical and
horizontal lines depicted in the contour plots. The red lines in the plots (b), (¢) and (h) correspond to the
approximate results evaluated following the procedure used also for the results reported in figure 3. We observe
that the exact result approaches the estimates close to the optimal values.
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Figure 8. (a)—(c): Efficiency of the quantum engine; (d)—(f): total work versus ry, and 7, (= 73), evaluated by computing the system
time evolution as discussed in appendix C. The plot in the second column report the values of efficiency (b) and work (e) as functions
of kg, for the value of 7, (= 73) indicated by the vertical lines in the contour plots. The red lines correspond to the quantities calculated
considering stationary states as in figure 7. The plot in the third column report the values of efficiency (c) and work (f) as a function of
71 (= 73), for the value of kg, indicated by the horizontal lines in the contour plots. The other parameters are the same as those
corresponding to figure 7(c).

The work done by this engine can be easily increased by using an higher temperature phonon reservoir. This
is shown in figure 7, where the number of thermal excitations is increased with respect to the situation of
figure 3. In these results we have also considered a larger value of the initial detuning, which implies a longer time
of the adiabatic processes, and in turn requires a smaller value of the cavity decay rate. The corresponding time
evolution of the populations of the system modes is shown in figure 7(c) and describes the expected behaviour
discussed in section 3. Figure 8 instead displays the corresponding results as a function of the effective cavity
decay rate g, and of the duration of the adiabatic processes and 7; (=73) evaluated by solving the dynamics of
the full model. We observe that while the efficiency of the engine is only slightly larger than the one achieved with
the parameters of figure 5, the work done by the system is significantly larger, and it achieves its optimal value
when both ry, and 7, fulfil the relations (15).

Figure 3 and 7 show that the optimal performance of the engine is expected for small optomechanical
coupling G and small final detuning A4 and this is confirmed by the results reported in figures 9 and 10. For the
parameters used in figure 9 the system follows more closely the ideal transformations described in section 3.
Specifically figure 9(c) shows the time evolution of the populations of the system modes, with an almost perfect
exchange of excitations between cavity and mechanical resonator in the first stroke and with N, which remains
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Figure 10. The same as in figure 8 but for the parameters corresponding to figure 9(c).

essentially constant. Figure 10 shows that both the efficiency and the work done by the engine are significantly
enhanced even if the system (without feedback) is not strongly coupled.

5. The Otto cycle on the upper polariton

In the previous section we have studied the thermodynamical properties of an Otto cycle operated on the lower

polariton B. A similar device can be implemented also using the upper polariton A if the following conditions are
fulfilled

1 1 1
— <KL <K<K — K7y, (20)
G ¥ K

Nopt,fb = Mth> (21)

such that the cavity effectively decay over the longest time scale and is coupled to the hot bath, meaning that the
roles of the hot and cold bath are now exchanged. These conditions can be, in principle, realized with the help of
feedback in a system with not to small mechanical dissipation rate -yand low thermal fluctuations. The four
strokes of the cycle are then similar to what we have discussed above, and can be realized with a similar variation
of the detuning (19), but with the roles of photonic and phononic excitations exchanged (see figure 11). Similar
to our previous discussion, in this case, we can estimate an engine efficiency of  ~ 1 — w,, /| As|. An example
of the performance of this engine is reported in figure 12. The results reported in figures 12(a) and (b) are
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Figure 12. (a) Thermal efficiency nand (b) total work W,,,; done by the engine (operated on the upper polariton) as a function of the
Detuning Arand the optomechanical coupling strength G, evaluated in terms of the steady-state quantities corresponding to the
upper polariton at each node of the cycle, and assuming perfect adiabatic processes. The white ares indicate the parameters at which
the system is unstable (see appendix C). The dots indicate the parameters used for the results in plots (c) and (d). (c) Shows the time
evolution of the populations of the polariton and bare modes. (d) Shows the corresponding energy changes (blue), heat exchanged
(red) and work performed (green) during each stroke of the cycle. The duration of each strokeis 7, = 73 = 35w;,!, 7, = 135w;,' and
74 = 20/ K. The other parametersare A; = —3w,,, 2k, = 0.1w,,, 2y = 0.012 w,,, and n,;, = 300. The feedback is set in order to
achieve the effective cavity decay rate 2k, = 2 X 10~ w,, and the effective number of thermal photons f14,.a, =~ 830.

estimates evaluated in terms of the steady state energy of the upper polariton mode at each node of the stroke

(assuming the population of the lower polariton mode constant). The efficiency in plot (a) is almost constant as a
function of the final detuning Arand this is due to the fact that the frequency of the upper polariton mode is
almost constant for values of the detuning close to the cavity resonance (see figure 11). The plots in figures 12(c)
and (d) are the time evolution of the modes populations and the heat and work corresponding to each stroke of
the cycle for the parameters indicated by the dot in plots (a) and (b), and computed using the formulas presented
in appendix C. They are qualitatively similar to the results of figures 5 (a) and (c) and demonstrate that for the
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chosen parameters the system is able to transform heat into work following an Otto cycle that involves only the
upper polariton.

We finally remark that we have not found any significant qualitative and quantitative difference between the
two schemes in the parameter regime that we have analysed (note that the higher efficiency in figure 12(d) as
compared to figure 5(c) is due to the larger number of excitations used in the former). Furthermore we note that
the scheme based on the upper polariton requires to run the feedback closer to the instability in order to achieve
asufficiently small 4, and a sufficiently large value of 71, g,. This can make the experimental implementation of
this engine significantly more problematic as compared to the engine based on the lower polariton.

6. Conclusion

Optomechanical devices come in very different sizes and configurations [5]. Their very high quality factor and
the corresponding low natural mechanical decay rate, which is by far the lowest rate in the system dynamics,
make them very versatile systems which are potential candidates for the experimental investigation of quantum
thermodynamical effects. However, in spite of the many proposal of optomechanical based heat engine no
experiment has demonstrated such devices so far. It is therefore important to suggest strategies for the
realization of a working optomechanical quantum engine. Here we have shown that the experimental realization
of the polariton-based quantum heat engine proposed in [7-9] can be significantly eased by means of a feedback
system [ 16—19] which allows to control the decay rate of the optical cavity. This engine exploits the lower
polariton mode as working fluid and works between the hot phononic thermal reservoir and the cold photonic
reservoir with which the polariton comes into contact as the cavity pump detuning is varied around the red
mechanical sideband frequency. A critical requirement in this device is the strong coupling regime, that
corresponds to an optomechanical interaction strength larger then the cavity decay rate so that the polariton
modes can be resolved. In general the coupling strength can be controlled by tuning the driving light power.
While, in principle, this could allow to achieve the strong coupling regime, in practice it is often not possible to
employ the needed power due to the onset of unwanted nonlinear effects. This is where the feedback realized in
[16] can be helpful.

In this work, we have reported a detailed analysis of the performance of the engine when the feedback is
employed to effectively reduce the cavity decay rates by driving the system close to the feedback instability
threshold. We have demonstrated that the engine can work efficiently even if the system without feedback is not
strongly coupled (such that in absence of feedback the polariton modes are not resolved). We have also shown
that the feebdack noise, which can be seen as an effective non-zero temperature photonic bath, can be employed
to define a similar engine working on the upper polariton mode where the role of the hot and cold baths are
exchanged such that the feedback noise is absorbed as heat and transformed into usable work.

The feedback strategy that we have analysed seems easily applicable in any optomechanical system since it
requires optical equipment already in use in most of optomechanical experiments. The results that we have
presented correspond to systems in the resolved sideband regime and in cryogenic environments (considering a
1 MHz resonator the results in figures 3, 5, 6 and 12 would correspond to an external temperature of 100 mK, the
results of figures 7—10, instead, would correspond to 1.7 K). Many experimental setups, both in the optical or
microwave regimes, can be employed for demonstrating our proposal as for example [22-27]. In order to test the
efficiency of this device one should be able to measure the energy variations and to distinguish the contributions
due to heat and work. This can be done by measuring the correlation matrix of the system by following for
example the approach realized in [24].

To conclude, we highlight that although we have not discussed specific quantum effects, the system that we
have studied can be used to study such phenomena. An important example is the investigation of the effects of
correlations in the reservoirs which have been predicted to enhance the efficiency of a quantum heat engine
beyond the Carnot limit [28]. This could be in principle analysed with our optomechanical system by using, for
example, a squeezed field to drive the cavity [26, 29]. Even more interestingly, in our case the bath correlations
could be provided by the feedback loop itself [ 19]. Another related and important question is whether,
correlations in the working fluid as well could be employed to enhance the efficiency of the engine as discussed in
[30]. In our system, in fact, the feedback induced parametric term, which is negligible in the parameter regime
that we have considered, could produce additional quantum coherence in the polariton state which may playa
relevant role in certain situations. Finally, it is also interesting to ponder if, in some parameter regime, the
behaviour of our engine could be interpreted as an instance of a Maxwell’s demon [31] which, in fact, can be seen
as a feedback system.
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Appendix A. The model in matrix form and the correlation matrix

The quantum Langevin equations (2) and (9) can be rewritten in matrix form, in terms of the vector of
operators 4! = (@, b, ', Z;T), as

a=Ma+ Qap,

where the drift matrix is

Kp — 14, iG Ke — K iG

G 1wy, G 0
M= — 1 y +.1w 1 - ’
Ke — Kb —-iG kg +14,  —iG
—iG 0 —iG v — iwpy

the matrix Q is given by

2k, O 0 0

0 2y 0 0
Q = ,
0 0 2kp O
0 0 0 J2v

A s . ~ P .
and _dj, is the vector of noise operator _ag = (din> bin, aiL, b;,). From equation (A.1) one finds that the
evolution of the correlation matrix

is given by
C=MC+CMT + QCinQ,

where C;,, is the correlation matrix of the noise operators

0 0 fopm+1 0

A oA 0 0 0 ng + 1
= . LTy — th
Cm — < Ain _din > nopt,fb 0 0 0

0 Nth 0 0

(note that in the absence of the feedback we have xg, = K.and rgpy g, = 0).

(A.1)

(A.2)

(A.3)

(A4)

(A.5)

(A.6)

By defining A = QC;,Q and introducing the linear super operator £ so that £ZC = MC + CMT we can

find the stationary correlation matrix

Co= L'\

Appendix B. Polariton description of the system

The Hamiltonian corresponding to the quantum Langevin equations (2) and (9) is

ﬁmzfﬁqﬁm+ﬁwﬁm+ﬁG@+ﬁBm+&U—iﬁﬁ%;@mffﬁ%

(A7)

(B.1)

The uncoupled normal modes of Hg, i.e. the polariton modes, can be expressed in terms of the bare operators

a (@M and b (Z;T) through a transformation matrix 7 as
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A=T"3, (B.2)

where A = (4, B, A, 1§T)T is the vector of the polariton operators and 7 is a symplectic transformation that
satisfies the relations 7Z7 ¥ = 7 and G7G = T * where 7 * is the matrix with the complex conjugate elements

of 7,G = ((1) (1)), and 7 is the symplectic form 7 = ( 01 (1)), with 1 the identity matrix. In terms of the

polariton operators, the Hamiltonian (B.1) reads

Ay = /ZwAA% + /z’wABATB + const, (B.3)
and the transformation matrix 7 can be obtained by solving the eigenvalue problem
My T="1TD, (B.4)
where, M, = ZH with H the matrix representation of equation (B.1), i.e. I:Ifb = aTHa, given by
—i(ke — k) G -A, G
7 G 0 G w
H== 1, B.5
2 -A, G (k. — kp) G (B:5)
G Wi G 0
and D the diagonal matrix of symplectic eigenvalues, defined as D = % diag{wy, wp, —wy, —wp} where
1
= f\/A; — (ke — kp)? + w2 + \/[Af, — (Ke — kp)? — Wi — 16G2Apwy, (B.6)
_ 1 2 2 2 2 2 272 2
wp = f\/Ap — (ke — k) + wh — JIAL — (5 — ) — WA — 16G*Apw, . (B.7)

In figure 2, we have depicted these eigenfrequencies in the red detuning regime (A, < 0) where the beam-
splitter interaction term of the Hamiltonian of equation (B.1) plays the dominant role [7]. The Hamilto-
nian (B.1)is stable, and the polariton modes can be defined, whenever the lowest eigenfrequency wy is real
positive, i.e.when A, < —2G*/w,, — \/4G4/w2m + (ke — Kp)?.

The correlation matrix C, for the polariton modes

C,=(AA") = "1, (B.8)

is related to the bare modes correlation matrix by the relation
C,=T'C(TH. (B.9)

In particular the steady state in the polariton base is obtained by computing equation (B.9) on the steady state
correlation matrix (A.7). The steady state population of the polariton B is then given by the element (4, 2) of the
resulting matrix (see (B.8)),i.e. Ng = {Cp 4, and similarly Ny = {C,}31.

Appendix C. Heat and work

The internal energy U of the system can be expressed in terms of the average of the system Hamiltonian [1]
U(t) = (A (1) = Trlp(t) Hp (1)) (C.1)

where p(t) is the density matrix which describes the state of the system at time ¢, and Hg,(#) is the system
Hamiltonian (B.1), with time dependent detuning A,(t). The energy change is given by the temporal derivative
of the internal energy

U = Trp(H®] + Trlp A @), (C2)

which is the sum of two contributions. The first, associated with the variation of the system Hamiltonian,
contributes to the work, while the second one is due to irreversible dissipative processes and contributes to the
heat [32]. Specifically, in a process that takes place from the initial time #; to the final time ¢;; the heat Q and the
work Ware defined by the time integrals

Q=" dr Trip) A (o), (C.3)

ti
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L X
w= [7de Trlpe) Fn o)), (C4)
ti
such that
Q+W=AU (C.5)

which represent the first law of thermodynamics. The difference in internal energy AU can be computed in
terms of the average values of the system Hamiltonian (B.1),as AU = (Hg,(t)) — (Hp(t;)). In particular, the
average value ( Hy, (¢)) can be expressed in terms of the second order correlation functions (which in turn are
derived using the solution of the equation for the correlation matrix (A.5) evaluated using the time dependent
detuning (19)) as

(A (5)) = — 1 A, (£) (a1 (1) 4(0)) + Jiwn (B (1) B(1))
+ AGI(b () a@) + (b) at @) + (0" (1) aw) + (B (1) a* 1))
— iz %[(amz) — (@ @)]1. (C.6)

The heat, instead, can be computed by substituting the system Hamiltonian (B.1) and the system master
equations

A

P i A . JU An aaia ian  aata  aan
p= _E[Hﬂ)(t)’ ,0] + Hc(nopt,fb + 1)(2ﬂPaT - aTap - P‘lTﬂ) + K nopt,ﬂ)(za-rpa - aan - Pa‘ﬂ)

oy (g + 1)@bpb" — 6'bp — pb'b) + e 26 pb — 66'p — pbb") (C.7)

(which provides a description of the system dynamics equivalent to the quantum Langevin equations (2) and
(9)), into equation (C.3). Thereby, exploiting the cyclic property of the trace, one finds that the heat exchanged
with the environment in a process from time t; to #sis given by

Q= [T dr Tiip O A1 = [ dt (2 ommn — 25 A1) renap + 2/ A1) ke (@F (1) alt))

t; ti
— 2onyrc (B (1) (D))

— WGk + NIBE®) a®) + B at@) + B @) aw) + (B'@) 4t ()]
i/ e (Ko — k) [(A(0)?) — (@T (1))} (C.8)

The correlation functions in this expression can be computed by solving the equation for the correlation
matrix (A.5) (with the time dependent detuning). Finally, the work is determined, in terms of these results for
AUand Q, using the first law of thermodynamics (C.5).

We notice that this approach allows to extend the numerical analysis introduced in [7-9] (which, being
based on the numerical integration of the master equation, is constrained to alow number of system excitations)
to an arbitrary number of excitations.
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