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Abstract
The dissipative properties of an optical cavity can be effectively controlled by placing it in a feedback
loopwhere the light at the cavity output is detected and the corresponding signal is used tomodulate
the amplitude of a laserfieldwhich drives the cavity itself. Herewe show that this effect can be
exploited to improve the performance of an optomechanical heat engine whichmakes use of polariton
excitations as working fluid. In particular we demonstrate that, by employing a positive feedback close
to the instability threshold, it is possible to operate this engine also under parameters regimeswhich
are not usable without feedback, andwhichmay significantly ease the practical implementation of this
device.

1. Introduction

Heat engines convert thermal energy intowork. A quantumheat engine uses a quantum system asworking fluid.
The practical realization of these devices is interesting as platforms for the experimental investigation of the
thermodynamics of the quantumworld and of non-equilibrium systems [1, 2].

Optomechanics [3]describes systems, which range from the nanoscale tomacroscopic sizes, where the
interaction between light andmechanical objects is exploited for enhancedmetrology [4], and to explore the
limits of quantumphysics [5, 6]. Thermalmachines based on optomechanical systems have been proposed and
analysed in different configurations [7–15]. A specific example [7–9]makes use of hybridized polariton
excitations asworkingfluid. This engine works in the strong optomechanical coupling regimewhere the normal
modes of the system are superpositions of optical andmechanical excitations. This regime is in general not easily
achievable and in some cases is inhibited by detrimental nonlinear processes, such as optical bistability or
thermorefractive effects, which hamper the ability to carefully control the coupled dynamics of the systems. It
has been shown [16] that feedback-controlled light [16–19] can be employed to significantly ease the onset of
strong coupling in an optomechanical system. This suggests [20] that the feedback analysed in [19] can be used to
enhance the efficiency of the quantumheat engine proposed in [7].

In this article we analyse the effect of feedback-controlled light on the performance of the polariton-based
optomechanical heat engine discussed in [7–9].We show that, with the aid of feedback, this engine can operate
efficiently alsowhen the system is not in the strong coupling regime and for parameters for which, in the absence
of feedback, the engine is not functional.

The article is organized as follows. In section 2we introduce themodel of the optomechanical systemdriven
by a feedback-controlled pumpfield. In section 3we review the functioning of the quantumheat engine
introduced in [7–9]. Then, in section 4we discuss the effect of feedback on the performance of this device. In
section 5we present a variant of the enginewhich exploits the upper polaritonmode asworking fluid. Finally,
section 6 is for the conclusions.
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2. Themodel

In this workwe consider an optomechanical device similar to the one discussed in [19], composed of an optical
cavity with amoving endmirror placedwithin a feedback loopwhere the light transmitted through the cavity is
detected and the corresponding signal is used tomodulate the amplitude of the laserfieldwhich drives the
system, see figure 1. In details, one resonantmode of the optical cavity at frequencyωc andwith decay rateκc, is
coupled to a vibrationalmode of themirror, at frequencyωm, which dissipates its energy at rate γ=ωm. The
laser is at frequencyωL and is detuned by w wD = -p L c form the cavity resonance.We describe the system in
terms of the standard linearizedmodel for the fluctuations of the optical andmechanical variables about the
corresponding average values [3] (this also implies that the cavity frequency includes the shift due to the
optomechanical interaction). Specifically, assuming that the feedback does not affect the average laser intensity
(this can be realized using a high-pass feedback response functionwhich cuts the low-frequency components of
the photocurrent [19]), the annihilation and creation operators for optical andmechanical excitations fulfil the
quantumLangevin equations

k k= - - D - + +ˆ̇ ( ) ˆ ( ˆ ˆ ) ˆ ( )†
a a G b b ai i 2 , 1c p c in

g w g= - + - + +ˆ̇ ( ) ˆ ( ˆ ˆ ) ˆ ( )†b i b G a a bi 2 , 2m in

whereG is the linearized coupling strength, ˆ ( )b tin is thenoise operator for themechanical resonatorwhich

describes thermalnoisewithnth thermal excitations according to the correlation function á ¢ ñ =ˆ ( ) ˆ ( )
†

b t b tin in
d+ - ¢( ) ( )n t t1 th , ˆ ( )a tin is the inputnoise operator for the cavityfieldwhich canbedecomposed in termsof the

noise operators ˆ ( )( )a tin
1 and ˆ ( )( )a tin

2 associatedwith the left and the rightmirror respectively, as
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withκ1 andκ2 the corresponding decay rates, such thatκc=κ1+κ2. In turn, the noise operator ˆ ( )( )a tin
1 can be

decomposed as the sumof the operatorwithout feedback plus an additional term F̂( )t due to the feedback
= + Fˆ ( ) ˆ ( ) ˆ ( )( ) ( )a t a t tin

1
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1 . The input noise operators ˆ ( )( )a tin,0
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2
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The feedback term F̂( )t depends on the feedback photocurrent [19]. In particular, if the feedback gain ḡfb is
constant over a sufficiently large band of frequencies around themechanical resonance, it can be approximated
as tF = -ˆ ( ) ¯ ˆ ( )t g i tfb fb fb , such that it is proportional to the photocurrent ˆ ( )i tfb at an earlier time determined by
the feedback delay time τfb [19, 20], so that

t= + -ˆ ( ) ˆ ( ) ¯ ˆ ( ) ( )( ) ( )a t a t g i t . 4in
1

in,0
1

fb fb fb

The photocurrent resulting from the homodyne detection of the field at the output of the secondmirror is
expressed as [19]

h h= + -
q

nˆ ( ) ˆ ( ) ˆ ( ) ( )( )
i t X t X t1 , 5fb d out,fb d

fb

Figure 1.The feedback loop: a quadrature of the field, transmitted through a Fabry–Pérot cavity with amovable endmirror, is
detected via homodyne detection at phase θfb, and the corresponding photocurrent is used tomodulate the inputfield [19].
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where θfb is the phase of the local oscillator, ηd is the detection efficiency, nˆ ( )X t is an operator representing
additional noise due to the inefficient detection, which satisfies the relation dá ¢ ñ = - ¢n nˆ ( ) ˆ ( ) ( )X t X t t t , and

= +
q q q-ˆ ( ) ˆ ( ) ˆ ( )( ) ( ) ( ) †X t a t a te eout,fb

i
out

2 i
out

2fb
fb fb is the detected field quadrature at phase θfb, with corresponding

annihilation operator determined by the standard input–output relation [21]

k= -ˆ ( ) ˆ ( ) ˆ ( ) ( )( ) ( )a t a t a t2 . 6out
2

2 in
2

According to equations (4) and (5) this operator is calculated at the delayed time t-ˆ ( )( )a tout
2

fb and, in the regime of
large detuningwith respect to the optomechanical coupling constant and cavity decay rate, i.e. kD ∣ ∣ G,p c, it is
convenient to rewrite it as a product of two terms (a slowly varying one and fast oscillating one) as t- =ˆ ( )a tout fb

t- t- D -¯̂ ( ) ( )a t e t
out fb

i p fb .Whenever the delay time ismuch shorter thanboth the characteristic timeof the
interaction 1/G and the decay time of the cavity 1/ 2κc , i.e. t k< G1 , 1 2 cfb , we can ignore the delay time
dependenceof the slowpart t-¯̂ ( )a tout fb and then rewrite theoutput operator as

t- =t t- D D Dˆ ( ) ¯̂ ( ) ˆ ( ) ( )a t a t a te e e . 7t
out fb out

i i
out

ip p pfb fb

In this situation the delay-time dependence of the photocurrent in equation (4) can be approximated as a phase
factor such that

t h h- = + + -f f
n

-ˆ ( ) ( ˆ ( ) ˆ ( )) ˆ ( ) ( )( ) ( ) †t a t a t X ti e e 1 , 8d dfb fb
i

out
2 i

out
2

wherewe have introduced the global phase f q tº - Dpfb fb.
By using equations (6), (4)and (8) and assumingf=0 (this can be achieved by properly adjusting the value

of θfb depending on the value of detuning), we can rewrite the equation for the cavity operator (1) as
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wherewe have introduced the feedback-modified cavity decay rate
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which describes additional effective thermal noise characterised by the correlation relations

dá ¢ ñ = - ¢ˆ ( ) ˆ ( ) ( ) ( )†a t a t n t t , 12in,fb in,fb opt,fb

á ¢ ñ =ˆ ( ) ˆ ( ) ( )a t a t 0, 13in,fb in,fb

with the feedback-mediated number of thermal excitations defined as

k k
h k k

=
-( ) ( )n . 14c

d c
opt,fb

fb
2

fb

This shows that, the feedback-controlled systembehaves as an effective optomechanical systemwithmodified
cavity decay rateκfb, under the effect of additional noisewith afinite number of thermal excitations nopt,fb andof
an additional parametric driving termwith strength k k-c fb (see equation (9)). The values of bothκfb and nopt,fb

are controllable via the feedback gain ḡfb according to the relations (10) and (14). This allows one to operate the
same systemunder different parameter regimes [16–19]. In particularwhen the feedback is operated close to its
instability threshold, namelywhen the effective cavity decay rate becomes very small (κfb→0), also aweakly
coupled systemmay exhibits the typical features of strongly coupled systems such as normalmode splitting [16].

3. The polariton-based optomechanical heat engine

References [7–9] describe a quantumheat enginewhichmakes use of polariton excitations in an optomechanical
system (without feedback) as workingfluid. This device requires strong optomechanical coupling and resolved
sideband regime w kG,m c for its functioning. Andworks at red detuning, where the laser frequency is lower
than the cavity frequency so that the optical andmechanicalmode can exchange coherently their excitations.
Only in this regime the hybridised polariton excitations (the excitations of the normalmodes of the system)
become relevant. The engine focuses on the lower polaritonmode and realises anOtto cycle formed by two
adiabatic and two isochoric processes. Specifically it works as follows (see figure 2). The lower polariton
frequency plays the role of the volume of theworkingfluid (similar to other single oscillator engines [1, 2]) and it
can be controlled via the laser detuning. This is the central tool used to operate the engine through the four
strokes of the cycle. At large detuning the lower polariton is phonon-like and it is in thermal contact with the hot
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mechanical thermal bath (see figure 2). A fast change of the detuning brings the laser closer to the cavity
resonance, passing through the redmechanical sideband, until the polariton becomes photon-like and comes
into contact with the cold (zero temperature) optical bath. This variation of the detuning realizes the first
adiabatic process from1 to 2 (see figure 2). Hence it has to be sufficiently fast in order to avoid dissipation.
However, at the same time, it has to be sufficiently slow in order to avoid non-adiabatic transitions to the upper
polaritonmode. Thismeans that the duration τ1 of this processmust fulfil the conditions t k G1 1 c1

(note that the linearized optomechanical coupling is assumed constant during the cycle; this can be achieved by
properly controlling the pump intensity during the adiabatic processes [7–9]). After the adiabatic process, the
detuning is kept fixed at the value closest to the cavity resonance for a time τ2?1/κcuntil the lower (photon-
like) polariton thermalizes with the optical reservoir realising the first isochoric process. This process has to be
sufficiently short (τ2=1/γ) in order to avoidmechanical dissipation of the upper(phonon-like) polariton
which should not contribute to the variation of the system energy during the cycle. The second adiabatic process
is realized by sweeping back the detuning to the initial value over a time τ3=τ1 so to guarantee the adiabaticity
of the process. Now, the lower polariton is again phonon-like and in the second isochoric process it thermalizes
with the thermalmechanical bath, over a time τ4?1/γ. The upper polariton, instead, does not change
significantly its number of excitations during the full cycle.

4. The feedback-enabled heat engine

A critical requirement in this device is the ability to realise the adiabatic processes which needs a sufficiently large
difference betweenG andκc. This is the regime of strong coupling that, although reached in a few systems
[22, 23], is not straightforward to achieve, and in certain cases it is inhibited by the onset of detrimental
nonlinear effects [16]. As discussed in [16], the feedback thatwe have described above seems particularly fit for
this purpose, and can be exploited to ease the realisation of this engine. In particular, on the one hand the
feedback loop enables one to reduce the cavity bandwidth and to bring a system into the strong coupling regime
even if naturally it is weakly coupled; on the other hand it adds extra noise to the cavity, corresponding to afinite
number of thermal photonic excitations nopt,fb. In order to realize the heat engine that works on the lower
polariton, the cycle shouldwork between a cold photonic reservoir and a hot phononic reservior. Thismeans
that theOtto cycle thatwe have discussed can be effective as long as <n nopt,fb th, which implies (see
equation (14)) thatκfb cannot be too small. Furthermore, a difference between themodel of [7, 8] and the
feedback-controlled system introduced in section 2 is the additional parametric driving in the latter (see
equation (9)). Howeverwhen the system is in the resolved sideband regime its effect is very small. Hence,
neglecting the parametric termwe can perform an analysis similar to the one discussed above also in the case of
feedback. Andwe can state that, when one utilises feedback, the engine canwork efficiently when the duration of
the four strokes fulfil the following set of relations

Figure 2. Frequency of the two polaritons (upperωA and lowerωB) of the optomechanical system as a function of the cavity detuning
Δp in the red-detuned caseΔp<0 (the optomechanical coupling strength isG=0.05 ωm). The dashed curves correspond to the
frequencies of the non-interactingmodes. In the plot we have indicated the position of the four nodes of theOtto cycle operated on the
lower polariton. The strokes fromnode 1 to 2 and from3 to 4 correspond to the adiabatic processes. The strokes fromnode 2 to 3 and
from 4 to 1 take place at constant detuning and correspond to the isochoric processes.
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If the cycle operates optimally with ideal adiabatic passages, then it realises a perfect Otto cycle where, in the
adiabatic processes, the system exchanges energywith the environment in terms of workwithout transferring
heat, instead, in the isochoric processes the system exchanges only heat and thermalizes with the environment
(see appendix C for a definition of heat andwork that applies to this system). In this case the heat and thework in
each stroke is given by the difference between the system’s energy at the beginning and at the end of each stroke
D = -E E Ei j j i (for i, j=1, 2, 3, 4), where, denotingwith the labelA the upper polariton andwithB the lower
one, the system energy is given by  w w= +( )E N NA A B B , withωx andNx (for Î { }x A B, ) the frequency and
the number of polariton excitations respectively. The polaritonA is initially photon-like and its frequency is
given by the initial cavity detuning w ~ D∣ ∣A i , with corresponding number of excitations ~N nA opt,fb. The
polaritonB, instead, is initially phonon likewith frequencyωB∼ωm andNB∼nth excitations. At the end of the
first adiabatic processA becomes phonon-like, at frequencyωA∼ωm, andB photon-likewith a frequency close
to the corresponding cavity detuning w ~ D∣ ∣B f . Then, in the isochoric process the polaritonB thermalizes with
the feedback-mediated optical bath, whileA should remainwith its initial number of excitations. Then, in the
second adiabatic process the polariton frequencies return to their initial values, and finally in the second
isochoric process, polaritonB returns to its initial value of excitations (note that during an ideal cycle the number
of excitations of the polaritonA should remain constant). Hence ideally the changes of energy (and the
corresponding heatQ andworkW) in the four strokes, are
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The negative work in thefirst stroke indicates that thework is performed by the system,while the positive heat in
the fourth stroke indicates that the heat is absorbed by the system. The efficiency of the cycle is given by the ratio
η=−Wtot/Qabs between the total work = + W W Wtot 1 2 3 4 and the absorbed heat = Q Qabs 4 1, that is,

h
w

=
- +
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( )W W

Q
1 . 18

f

m

1 2 3 4

4 1

Note that during the adiabatic processes part of thework is also done by and on the polaritonA (respectively in
thefirst and second adiabatic process). However, since the number of excitations does not change the net
contribution to the total work due to polaritonA is zero.

4.1. Results
Amore accurate estimate of the efficiency and of thework performed by this engine can be computed by
focusing on the steady state properties of the lower polaritonB alone at the end of each stroke, but still assuming
perfect adiabatic processes and constant population of the upper polariton throughout thewhole cycle. This
allows to better estimate the expected performance of the engine by taking into account also the effects of the
optomechanical interaction at large and small detuning. Specifically, equations (2) and (9) can be used to
evaluate the steady state correlationmatrix ss of the system (see appendix A for details); moreover, the
populations and the frequencies of the polaritonmodeB can be estimated by transforming the correlation
matrix to the polariton bases, which determines the normalmodes of the systemHamiltonian as discussed in
appendix B. This allows to estimate the energy associated to the polaritonB at the beginning and end of each
stroke ( w=E NB j B j B j, , , for j=1, 2, 3, 4) and to estimate the correspondingwork and heat (such as

~ - - + -( )W E E E EB B B Btot ,2 ,1 ,4 ,3 and ~ -Q E EB Babs ,1 ,4). The corresponding results are reported in
figure 3. They show that the optimal performance of the engine are achieved at smallΔp andG [7, 8]. In this
regime however our estimate are likely to be inaccurate. In fact, on the one hand, at vanishingG the time for the
adiabatic passage needs to be extremely long (longer then the dissipation time), and on the other hand at small
Δp the effect of the parametric term can become important (in fact at very smallΔf the system is unstable (see
appendix C) as indicated by thewhite areas infigure 3). In order to address this issuemore rigorously we have
analysed the full dynamics of the system.

An in-depth study of the efficiency of the engine is achieved by solving the quantumLangevin equations (2)
and (9), and computing the time evolution of the energy exchanged between the system and the environment in
terms of heat andwork as discussed in appendix C. Specifically, these quantities can be expressed in terms of the
correlation functions of the systemoperators, the dynamics of which can be computed by standard techniques
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(see appendix A). Hereafter we report and discuss the result of this numerical analysis when the cavity detuning
Δp is changed in time, in order to realise theOtto cycle, according to the relation
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D =

- + D <

D <

- + D <
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19p
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i

0 0 1

1 2

2 2 2

3 4

f i

i f

1 0

3 2

In details (see figure 4), in the first stroke the detuning is changed linearly from the initial valueΔi toΔf. Then it
is kept constant at the valueΔf. In the third stroke it changes linearly back to the initial value. And finally, in the
last stroke, it remains constant at the valueΔi. The duration of each stroke is t = - -t tj j1 1, for j=1, 2, 3, 4.

Infigure 5we report the results evaluated for an optomechanical couplingG of the same order of the cavity
decay rateκc. In this case the engine described in [7, 8] has low efficiency. Herewe utilize feedback to effectively
reduce the cavity linewidth and reach the regime of strong coupling [16] and significantly enhance the
performance of the engine. Figure 5(a) shows that the lowest polaritonB plays themain role in the dynamics of
the system, andwe can ignore the dynamics of the polaritonA as the variation of its excitations is relatively small
during each stroke of theOtto cycle. At the beginning of the process, the number of excitations of the upper and
lower polaritonmodes,NA andNB, are almost equal to the number of photonsNa and phononNb respectively.

Figure 3. (a)Thermal efficiency η and (b) total workWtot done by the engine (operated on the lower polariton) as a function of the
smallest detuningΔf and the optomechanical coupling strengthG, evaluated in terms of the steady-state energy corresponding to the
lower polaritonmode at each node of cycle, assuming perfect adiabatic processes and constant excitations of the upper polariton
mode. Thewhite areas indicate the parameter regime at which the system is unstable (see appendix C). The dots indicate the
parameters used for the results infigures 5 and 6. The other parameters areΔi=−3ωm, 2κc=0.1ωm, g w= -2 10 m

4 , and nth=300.
The feedback is set in order to achieve the effective cavity decay rate 2κfb=0.015ωm, corresponding to an effective number of thermal
photons »n 8opt,fb (see equation (14)).

Figure 4.Time evolution of the detuningΔp. The vertical dashed lines indicate the end and the beginning of each stroke. The last
stroke is not shown completely because it is very slow due to the smallmechanical damping rate γ. During the last stroke theΔp

remains constant.
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The numbers of polaritonsNA andNB remain almost constant during the first adiabatic passage (while at the
same time the phonon and photon numbers exchange their values). In the second stroke the photon-like
B-polaritons decay due to cavity dissipation (the oscillations of the photon and phonon populations are due to
the optomechanical coupling). In the third stroke the polaritonmodeB comes back to its phonon-like character,
and then it slowly thermalizes to its initial population. Thefinal thermalization is shown in plots (b) and (e)
because it is very slow due to the smallmechanical damping rate γ. This behaviour is consistent with that of an
Otto cycle as discussed in section 4 [7, 8]. It is alsoworth to notice that the population of polaritonA remains
small throughout thewhole cycle, indicating that it plays aminor role in the energy exchanges and hence in the
functioning of the engine. Figure 5(c) shows the changes in energy, work and heat in each stroke. As expected for
anOtto cycle, thefirst and third strokes (the adiabatic passages) aremainly associatedwithwork production,
while heat is exchangedmainly in the isochoric processes (second and fourth strokes). In particular, the system

Figure 5. (a), (b), (d), (f)Time evolution of the populations of the polaritonmodes,NB (red line) andNA (green line), and of the
photonic (Na, blue line) and phononicmodes (Nb, orange line) during a loop of the engine cycle (with initial state given by the system
steady state at the initial detuning)with (a), (b) andwithout (d), (e) feedback. (a) and (d) show the dynamics in thefirst three strokes.
(b) and (d) show a longer time scale that highlight the slow thermalization in the fourth stroke. Corresponding energy change (blue),
heat exchanged (red) andwork performed (green)during each stroke of the cycle. The duration of each stroke is t t w= = -35 m1 3

1,
t w= -135 m2

1 and τ4=20/γ. The other parameters are as infigure 3.
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produces work in thefirst stroke, while it absorbs heat in the fourth stroke. Themarginal imperfections of
figure 5(c) (finite heat exchanges in the first and third stroke) are due to non-ideal adiabatic processes [20]. As a
comparisonwe plot infigures 5(d)–(f) the corresponding results achievable with the same systemwhen the
feedback is off. In this case the cavity dissipation is too large and the population of the polaritonmodeB
decreases significantly in the first stroke, thework performed is strongly reduced and the corresponding thermal
efficiency ismuch lower.

It is instructive to analyse the performance of the engine in terms of its efficiency, performedwork and
absorbed heat as a function of the twomost critical time scales of the engine dynamics, namely the effective decay
rateκfb and the duration of the adiabatic processes t t=( )1 3 . These results are shown infigure 6. The contour
plots highlight that althoughmaximumefficiency andmaximumwork are not achieved for the same parameters
(see the dots in the contour plots), the corresponding values are relatively stable and the results achievedwhen η
ismaximumare very close to those corresponding tomaximum-Wtot. Thework ismaximized at intermediate
values of bothκfb and τ1, as a compromise between the opposite requirements described by the hierarchy
relations (15). Thewhite areas in the contour plots indicate the parameters inwhich the engine is not functional.
Namely for these parameters the total work become positive (indicating that thework is done on the system and
not by the system). Plots (b), (c), (e), (f), (h) and (i) represent the values of η,Wtot andQabs, along the vertical and
horizontal lines depicted in the contour plots. The red lines in the plots (b), (e) and (h) correspond to the
approximate results evaluated following the procedure used also for the results reported infigure 3.We observe
that the exact result approaches the estimates close to the optimal values.

Figure 6. (a)–(c): Efficiency of the quantum engine; (d)–(f): total work; (g)–(i): absorbed heat during the cycle, versusκfb and τ1 (=τ3),
evaluated by computing the system time evolution as discussed in appendix C. The plots in the second column report the values of
efficiency (b), work (e) and heat (h) as a function ofκfb, for the value of τ1 (=τ3) indicated by the vertical lines in the corresponding
contour plots. The green and blue lines correspond to the values thatmaximize efficiency andwork respectively. The red lines
correspond to the quantities calculated considering stationary states as infigure 3. The plot in the third column report the values of
efficiency (c), work (f) and heat (i) as a function of τ1 (=τ3), for the value ofκfb indicated by the horizontal lines in the corresponding
contour plots. The other parameters are the same as those used in figure 5.
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Thework done by this engine can be easily increased by using an higher temperature phonon reservoir. This
is shown infigure 7, where the number of thermal excitations is increasedwith respect to the situation of
figure 3. In these results we have also considered a larger value of the initial detuning, which implies a longer time
of the adiabatic processes, and in turn requires a smaller value of the cavity decay rate. The corresponding time
evolution of the populations of the systemmodes is shown infigure 7(c) and describes the expected behaviour
discussed in section 3. Figure 8 instead displays the corresponding results as a function of the effective cavity
decay rateκfb and of the duration of the adiabatic processes and t t=( )1 3 evaluated by solving the dynamics of
the fullmodel.We observe that while the efficiency of the engine is only slightly larger than the one achievedwith
the parameters offigure 5, thework done by the system is significantly larger, and it achieves its optimal value
when bothκfb and τ1 fulfil the relations(15).

Figure 3 and 7 show that the optimal performance of the engine is expected for small optomechanical
couplingG and smallfinal detuningΔf, and this is confirmed by the results reported in figures 9 and 10. For the
parameters used in figure 9 the system followsmore closely the ideal transformations described in section 3.
Specificallyfigure 9(c) shows the time evolution of the populations of the systemmodes, with an almost perfect
exchange of excitations between cavity andmechanical resonator in thefirst stroke andwithNAwhich remains

Figure 7. (a)Thermal efficiency η and (b) total workWtot done by the engine as in figure 3 butwith g w= -2 10 m
7 , and nth=5000,

Δi=−10ωm, k w= ´ -2 2 10fb m
3 ( »n 80opt,fb ). (c) the time evolution of the population of the polariton and baremodes for the

parameters corresponding to the dot in plot (a) and (b) andwith t t w= = -500 m1 3
1, τ2=3/κfb and τ4=20/γ.

Figure 8. (a)–(c): Efficiency of the quantum engine; (d)–(f): total work versusκfb and τ1 (=τ3), evaluated by computing the system
time evolution as discussed in appendix C. The plot in the second column report the values of efficiency (b) andwork (e) as functions
ofκfb, for the value of τ1 (=τ3) indicated by the vertical lines in the contour plots. The red lines correspond to the quantities calculated
considering stationary states as infigure 7. The plot in the third column report the values of efficiency (c) andwork (f) as a function of
τ1 (=τ3), for the value ofκfb indicated by the horizontal lines in the contour plots. The other parameters are the same as those
corresponding to figure 7(c).
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essentially constant. Figure 10 shows that both the efficiency and thework done by the engine are significantly
enhanced even if the system (without feedback) is not strongly coupled.

5. TheOtto cycle on the upper polariton

In the previous sectionwe have studied the thermodynamical properties of anOtto cycle operated on the lower
polaritonB. A similar device can be implemented also using the upper polaritonA if the following conditions are
fulfilled

t t
g

t
k

t     ( )
G

1
,

1 1
, 20

fb
1 3 2 4

> ( )n n , 21opt,fb th

such that the cavity effectively decay over the longest time scale and is coupled to the hot bath,meaning that the
roles of the hot and cold bath are now exchanged. These conditions can be, in principle, realizedwith the help of
feedback in a systemwith not to smallmechanical dissipation rate γ and low thermal fluctuations. The four
strokes of the cycle are then similar towhatwe have discussed above, and can be realizedwith a similar variation
of the detuning(19), but with the roles of photonic and phononic excitations exchanged (see figure 11). Similar
to our previous discussion, in this case, we can estimate an engine efficiency of h w~ - D∣ ∣1 m f . An example
of the performance of this engine is reported in figure 12. The results reported in figures 12(a) and (b) are

Figure 9.The same as infigure 7with k w= ´ -2 2 10 mfb
4 ( »n 830opt,fb ) and t t w= = -5000 m1 3

1.

Figure 10.The same as infigure 8 but for the parameters corresponding to figure 9(c).
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estimates evaluated in terms of the steady state energy of the upper polaritonmode at each node of the stroke
(assuming the population of the lower polaritonmode constant). The efficiency in plot (a) is almost constant as a
function of thefinal detuningΔf and this is due to the fact that the frequency of the upper polaritonmode is
almost constant for values of the detuning close to the cavity resonance (see figure 11). The plots infigures 12(c)
and (d) are the time evolution of themodes populations and the heat andwork corresponding to each stroke of
the cycle for the parameters indicated by the dot in plots (a) and (b), and computed using the formulas presented
in appendix C. They are qualitatively similar to the results offigures 5 (a) and (c) and demonstrate that for the

Figure 11. Scheme of theOtto cycle operated on the upper polariton (see figure 2 for the cycle operated on the lower polariton).

Figure 12. (a)Thermal efficiency η and (b) total workWtot done by the engine (operated on the upper polariton) as a function of the
DetuningΔf and the optomechanical coupling strengthG, evaluated in terms of the steady-state quantities corresponding to the
upper polariton at each node of the cycle, and assuming perfect adiabatic processes. Thewhite ares indicate the parameters at which
the system is unstable (see appendixC). The dots indicate the parameters used for the results in plots (c) and (d). (c) Shows the time
evolution of the populations of the polariton and baremodes. (d) Shows the corresponding energy changes (blue), heat exchanged
(red) andwork performed (green) during each stroke of the cycle. The duration of each stroke is t t w= = -35 m1 3

1, t w= -135 m2
1 and

t k= 204 fb. The other parameters areΔi=−3ωm, 2κc=0.1ωm, 2γ=0.012 ωm, and nth=300. The feedback is set in order to
achieve the effective cavity decay rate k w= ´ -2 2 10 mfb

4 and the effective number of thermal photons nopt,fb≈830.
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chosen parameters the system is able to transformheat intowork following anOtto cycle that involves only the
upper polariton.

Wefinally remark that we have not found any significant qualitative and quantitative difference between the
two schemes in the parameter regime that we have analysed (note that the higher efficiency infigure 12(d) as
compared tofigure 5(c) is due to the larger number of excitations used in the former). Furthermorewe note that
the scheme based on the upper polariton requires to run the feedback closer to the instability in order to achieve
a sufficiently smallκfb and a sufficiently large value of nopt,fb. This canmake the experimental implementation of
this engine significantlymore problematic as compared to the engine based on the lower polariton.

6. Conclusion

Optomechanical devices come in very different sizes and configurations [5]. Their very high quality factor and
the corresponding lownaturalmechanical decay rate, which is by far the lowest rate in the systemdynamics,
make themvery versatile systemswhich are potential candidates for the experimental investigation of quantum
thermodynamical effects. However, in spite of themany proposal of optomechanical based heat engine no
experiment has demonstrated such devices so far. It is therefore important to suggest strategies for the
realization of aworking optomechanical quantum engine. Herewe have shown that the experimental realization
of the polariton-based quantumheat engine proposed in [7–9] can be significantly eased bymeans of a feedback
system [16–19]which allows to control the decay rate of the optical cavity. This engine exploits the lower
polaritonmode asworking fluid andworks between the hot phononic thermal reservoir and the cold photonic
reservoir withwhich the polariton comes into contact as the cavity pumpdetuning is varied around the red
mechanical sideband frequency. A critical requirement in this device is the strong coupling regime, that
corresponds to an optomechanical interaction strength larger then the cavity decay rate so that the polariton
modes can be resolved. In general the coupling strength can be controlled by tuning the driving light power.
While, in principle, this could allow to achieve the strong coupling regime, in practice it is often not possible to
employ the needed power due to the onset of unwanted nonlinear effects. This is where the feedback realized in
[16] can be helpful.

In this work, we have reported a detailed analysis of the performance of the enginewhen the feedback is
employed to effectively reduce the cavity decay rates by driving the system close to the feedback instability
threshold.We have demonstrated that the engine canwork efficiently even if the systemwithout feedback is not
strongly coupled (such that in absence of feedback the polaritonmodes are not resolved).We have also shown
that the feebdack noise, which can be seen as an effective non-zero temperature photonic bath, can be employed
to define a similar engineworking on the upper polaritonmodewhere the role of the hot and cold baths are
exchanged such that the feedback noise is absorbed as heat and transformed into usablework.

The feedback strategy that we have analysed seems easily applicable in any optomechanical system since it
requires optical equipment already in use inmost of optomechanical experiments. The results that we have
presented correspond to systems in the resolved sideband regime and in cryogenic environments (considering a
1MHz resonator the results infigures 3, 5, 6 and 12would correspond to an external temperature of 100 mK, the
results offigures 7–10, instead, would correspond to 1.7 K).Many experimental setups, both in the optical or
microwave regimes, can be employed for demonstrating our proposal as for example [22–27]. In order to test the
efficiency of this device one should be able tomeasure the energy variations and to distinguish the contributions
due to heat andwork. This can be done bymeasuring the correlationmatrix of the systemby following for
example the approach realized in [24].

To conclude, we highlight that althoughwe have not discussed specific quantum effects, the system thatwe
have studied can be used to study such phenomena. An important example is the investigation of the effects of
correlations in the reservoirs which have been predicted to enhance the efficiency of a quantumheat engine
beyond theCarnot limit [28]. This could be in principle analysedwith our optomechanical systemby using, for
example, a squeezed field to drive the cavity [26, 29]. Evenmore interestingly, in our case the bath correlations
could be provided by the feedback loop itself [19]. Another related and important question is whether,
correlations in theworkingfluid as well could be employed to enhance the efficiency of the engine as discussed in
[30]. In our system, in fact, the feedback induced parametric term,which is negligible in the parameter regime
thatwe have considered, could produce additional quantum coherence in the polariton state whichmay play a
relevant role in certain situations. Finally, it is also interesting to ponder if, in some parameter regime, the
behaviour of our engine could be interpreted as an instance of aMaxwell’s demon [31]which, in fact, can be seen
as a feedback system.
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AppendixA. Themodel inmatrix form and the correlationmatrix

The quantumLangevin equations (2) and (9) can be rewritten inmatrix form, in terms of the vector of

operators =ˆ ( ˆ ˆ ˆ ˆ )† †
a a b a b, , ,T , as

= +ˆ̇ ˆ ˆ ( )a a Q a , A.1in

where the driftmatrix is



k k k
g w

k k k
g w

= -

- D -
+

- - + D -
- - -

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )

G G

G G

G G

G G

i i i

i i i 0

i i i

i 0 i i

, A.2

p c

m

c p

m

fb fb

fb fb

thematrix is given by

k

g

k

g

=

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟⎟
( )Q

2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

, A.3

fb

fb

and âin is the vector of noise operator =ˆ ( ˆ ˆ ˆ ˆ )† †
a a b a b, , ,in

T
in in in in . From equation (A.1) onefinds that the

evolution of the correlationmatrix
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is given by

   = + +˙ ( )Q Q, A.5T
in

where in is the correlationmatrix of the noise operators

 = á ñ =

+
+
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⎝
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⎞

⎠
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n
n
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0 0 1 0
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A.6T
in in in

opt,fb

th

opt,fb

th

(note that in the absence of the feedbackwe haveκfb=κc and =n 0opt,fb ).

By defining  = Q Qin and introducing the linear super operator ̂ so that   = +ˆ C C C T we can
find the stationary correlationmatrix

  = - -ˆ ( ). A.7ss
1

Appendix B. Polariton description of the system

TheHamiltonian corresponding to the quantumLangevin equations (2) and (9) is

   w
k k

= - D + + + + -
-

-ˆ ˆ ˆ ˆ ˆ ( ˆ ˆ )( ˆ ˆ ) ( ˆ ˆ ) ( )† † † † †H a a b b G b b a a a ai
2

. B.1p m
c

fb
fb 2 2

The uncoupled normalmodes of Ĥfb, i.e. the polaritonmodes, can be expressed in terms of the bare operators

â ( ˆ†a ) and b̂ ( ˆ†
b ) through a transformationmatrix  as
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= -ˆ ˆ ( )A a, B.21

where =ˆ ( ˆ ˆ ˆ ˆ )† †
A A B A B, , , T is the vector of the polariton operators and  is a symplectic transformation that

satisfies the relations  =T and * = where * is thematrix with the complex conjugate elements

of  ,  = ( )1
1
0

0
, and  is the symplectic form  =

-( )1
1

0
0

, with 1 the identitymatrix. In terms of the

polariton operators, theHamiltonian (B.1) reads

 w w= + +ˆ ˆ ˆ ˆ ˆ ( )† †H A A B B const, B.3A Afb

and the transformationmatrix  can be obtained by solving the eigenvalue problem

  = ( ), B.40

where, =0 with thematrix representation of equation (B.1), i.e. =ˆ ˆ ˆH a aT
fb , given by
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and  the diagonalmatrix of symplectic eigenvalues, defined as  w w w w= - -{ }diag , , ,A B A B
1

2
where
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Infigure 2, we have depicted these eigenfrequencies in the red detuning regime (Δp<0)where the beam-
splitter interaction termof theHamiltonian of equation (B.1) plays the dominant role [7]. TheHamilto-
nian(B.1) is stable, and the polaritonmodes can be defined, whenever the lowest eigenfrequencyωB is real

positive, i.e. whenD < - G2p
2/w w k k- + -( )G4m m c fb

4 2 2 .
The correlationmatrix p for the polaritonmodes
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, B.8p
T

is related to the baremodes correlationmatrix by the relation

   = - -( ) ( ). B.9p
T1 1

In particular the steady state in the polariton base is obtained by computing equation (B.9) on the steady state
correlationmatrix (A.7). The steady state population of the polaritonB is then given by the element (4, 2) of the
resultingmatrix (see (B.8)), i.e. = { }NB p 4,2, and similarly = { }NA p 3,1.

AppendixC.Heat andwork

The internal energyU of the system can be expressed in terms of the average of the systemHamiltonian [1]

r= á ñ =( ) ˆ ( ) [ ˆ ( ) ˆ ( )] ( )U t H t t H tTr C.1fb fb

where ρ(t) is the densitymatrix which describes the state of the system at time t, andHfb(t) is the system
Hamiltonian(B.1), with time dependent detuningΔp(t). The energy change is given by the temporal derivative
of the internal energy

r r= +˙ ( ) [ ˆ ( ) ˆ̇ ( )] [ ˆ̇ ( ) ˆ ( )] ( )U t t H t t H tTr Tr , C.2

which is the sumof two contributions. Thefirst, associatedwith the variation of the systemHamiltonian,
contributes to thework, while the second one is due to irreversible dissipative processes and contributes to the
heat [32]. Specifically, in a process that takes place from the initial time ti to thefinal time tf, the heatQ and the
workW are defined by the time integrals

ò r= [ ˆ̇ ( ) ˆ ( )] ( )Q t t H td Tr , C.3
t

t

fb
i

f
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ò r= [ ˆ ( ) ˆ ( )] ( )W t t H td Tr , C.4
t

t

fb
i

f

such that

+ = D ( )Q W U C.5

which represent thefirst law of thermodynamics. The difference in internal energyDU can be computed in
terms of the average values of the systemHamiltonian(B.1), asD = á ñ - á ñ( ) ( )U H t H tf ifb fb . In particular, the
average value á ñ( )H tfb can be expressed in terms of the second order correlation functions (which in turn are
derived using the solution of the equation for the correlationmatrix (A.5) evaluated using the time dependent
detuning (19)) as

 
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The heat, instead, can be computed by substituting the systemHamiltonian(B.1) and the systemmaster
equations


r r k r r r k r r r

g r r r g r r r

=- + + - - + - -

+ + - - + - -
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c cfb opt,fb opt,fb

th th

(which provides a description of the systemdynamics equivalent to the quantumLangevin equations (2) and
(9)), into equation (C.3). Thereby, exploiting the cyclic property of the trace, onefinds that the heat exchanged
with the environment in a process from time ti to tf is given by
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The correlation functions in this expression can be computed by solving the equation for the correlation
matrix(A.5) (with the time dependent detuning). Finally, thework is determined, in terms of these results for
ΔU andQ, using thefirst law of thermodynamics(C.5).

We notice that this approach allows to extend the numerical analysis introduced in [7–9] (which, being
based on the numerical integration of themaster equation, is constrained to a lownumber of system excitations)
to an arbitrary number of excitations.
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