Climacostol (5-[(2Z)-non-2-en-1-yl]benzene-1,3-diol) is a resorcinol produced by the protozoan Climacostomum virens for defence against predators. It exerts a potent antimicrobial activity against bacterial and fungal pathogens, inhibits the growth of several human and rodent tumour cells, and is now available by chemical synthesis. In this study, we chemically synthesized two novel analogues of climacostol, namely, 2-methyl-5 [(2Z)-non-2-en-1-yl]benzene-1,3-diol (AN1) and 5-[(2Z)-non-2-en-1-yl]benzene-1,2,3-triol (AN2), with the aim to increase the activity of the native toxin, evaluating their effects on prokaryotic and free-living protists and on mammalian tumour cells. The results demonstrated that the analogue bearing a methyl group (AN1) in the aromatic ring exhibited appreciably higher toxicity against pathogen microbes and protists than climacostol. On the other hand, the analogue bearing an additional hydroxyl group (AN2) in the aromatic ring revealed its ability to induce programmed cell death in protistan cells. Overall, the data collected demonstrate that the introduction of a methyl or a hydroxyl moiety to the aromatic ring of climacostol can effectively modulate its potency and its mechanism of action.

Bioactivity and structural properties of novel synthetic analogues of the protozoan toxin climacostol

Giorgi S.;Lupidi G.;Rossi F. V.;Marcantoni E.;Petrelli D.;
2019-01-01

Abstract

Climacostol (5-[(2Z)-non-2-en-1-yl]benzene-1,3-diol) is a resorcinol produced by the protozoan Climacostomum virens for defence against predators. It exerts a potent antimicrobial activity against bacterial and fungal pathogens, inhibits the growth of several human and rodent tumour cells, and is now available by chemical synthesis. In this study, we chemically synthesized two novel analogues of climacostol, namely, 2-methyl-5 [(2Z)-non-2-en-1-yl]benzene-1,3-diol (AN1) and 5-[(2Z)-non-2-en-1-yl]benzene-1,2,3-triol (AN2), with the aim to increase the activity of the native toxin, evaluating their effects on prokaryotic and free-living protists and on mammalian tumour cells. The results demonstrated that the analogue bearing a methyl group (AN1) in the aromatic ring exhibited appreciably higher toxicity against pathogen microbes and protists than climacostol. On the other hand, the analogue bearing an additional hydroxyl group (AN2) in the aromatic ring revealed its ability to induce programmed cell death in protistan cells. Overall, the data collected demonstrate that the introduction of a methyl or a hydroxyl moiety to the aromatic ring of climacostol can effectively modulate its potency and its mechanism of action.
2019
File in questo prodotto:
File Dimensione Formato  
Manuscript Toxins 2019, 11(1), 42.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Licenza: PUBBLICO - Creative Commons
Dimensione 8.38 MB
Formato Adobe PDF
8.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/425644
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact