A standard fresh pasta formulation (STD, the control sample) was modified by introducing soy and carrot ingredients both in dry and in liquid forms (soy and carrot flour and soy milk and carrot juice) to obtain eight nutritionally enriched fresh pasta samples with different formulations. The effect of formulation on selected physicochemical properties and water status of fresh pasta were studied. Colour, texture (force at rupture and extensibility), and cooking loss were found significantly affected by the formulation. Soy and carrot decreased the force at rupture and extensibility of fresh pasta and increased the solids loss during cooking. Improper gluten network development due to either a steric hindrance of soy and carrot solids or improper water availability for gluten hydration due to different water–solid interaction developed were hypothesized. Soy and carrot ingredients significantly altered the water dynamics in the pasta matrix at different space-time levels (macroscopic, moisture content and water activity; macromolecular, frozen water content; molecular, proton nuclear magnetic resonance relaxometry) of fresh pasta in a manner dependent upon the physical state of the added ingredient. Soy flour increased both the frozen water content and the overall proton mobility (1H FID, 1H T 1 and T 2) of fresh pasta while these parameters did not markedly differed from STD when soy milk was used. The presence of both carrot flour and carrot juice decreased significantly the frozen water content of fresh pasta but, at a molecular level, carrot flour altered the proton molecular mobility, while carrot juice did not.

Effect of Formulation on Physicochemical Properties and Water Status of Nutritionally Enriched Fresh Pasta

Vittadini, Elena
2010-01-01

Abstract

A standard fresh pasta formulation (STD, the control sample) was modified by introducing soy and carrot ingredients both in dry and in liquid forms (soy and carrot flour and soy milk and carrot juice) to obtain eight nutritionally enriched fresh pasta samples with different formulations. The effect of formulation on selected physicochemical properties and water status of fresh pasta were studied. Colour, texture (force at rupture and extensibility), and cooking loss were found significantly affected by the formulation. Soy and carrot decreased the force at rupture and extensibility of fresh pasta and increased the solids loss during cooking. Improper gluten network development due to either a steric hindrance of soy and carrot solids or improper water availability for gluten hydration due to different water–solid interaction developed were hypothesized. Soy and carrot ingredients significantly altered the water dynamics in the pasta matrix at different space-time levels (macroscopic, moisture content and water activity; macromolecular, frozen water content; molecular, proton nuclear magnetic resonance relaxometry) of fresh pasta in a manner dependent upon the physical state of the added ingredient. Soy flour increased both the frozen water content and the overall proton mobility (1H FID, 1H T 1 and T 2) of fresh pasta while these parameters did not markedly differed from STD when soy milk was used. The presence of both carrot flour and carrot juice decreased significantly the frozen water content of fresh pasta but, at a molecular level, carrot flour altered the proton molecular mobility, while carrot juice did not.
2010
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/424741
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
social impact