Differential scanning calorimetry thermograms of five commercial categories of olive oils (extra virgin olive oil, olive oil, refined olive oil, olive-pomace oil and refined olive-pomace oil) were performed in both cooling and heating regimes. Overlapping transitions were resolved by deconvolution analysis and all thermal properties were related to major (triacylglycerols, total fatty acids) and minor (diacylglycerols, lipid oxidation products) chemical components. All oils showed two well distinguishable exothermic events upon cooling. Crystallization enthalpies were significantly lower in olive oils due to a more ordered crystal structure, which may be related to the higher triolein content. Pomace oils exhibited a significantly higher crystallization onset temperature and a larger transition range, possibly associated to the higher amount of diacylglycerols. Heating thermograms were more complex: all oils exhibited complex exo- and endothermic transitions that could differentiate samples especially with respect to the highest temperature endotherm. These preliminary results suggest that both cooling and heating thermograms obtained by means of differential scanning calorimetry may be useful for discriminating among olive oils of different commercial categories.

Differential scanning calorimetry: a potential tool for discrimination of olive oil commercial categories

E. Vittadini;
2008-01-01

Abstract

Differential scanning calorimetry thermograms of five commercial categories of olive oils (extra virgin olive oil, olive oil, refined olive oil, olive-pomace oil and refined olive-pomace oil) were performed in both cooling and heating regimes. Overlapping transitions were resolved by deconvolution analysis and all thermal properties were related to major (triacylglycerols, total fatty acids) and minor (diacylglycerols, lipid oxidation products) chemical components. All oils showed two well distinguishable exothermic events upon cooling. Crystallization enthalpies were significantly lower in olive oils due to a more ordered crystal structure, which may be related to the higher triolein content. Pomace oils exhibited a significantly higher crystallization onset temperature and a larger transition range, possibly associated to the higher amount of diacylglycerols. Heating thermograms were more complex: all oils exhibited complex exo- and endothermic transitions that could differentiate samples especially with respect to the highest temperature endotherm. These preliminary results suggest that both cooling and heating thermograms obtained by means of differential scanning calorimetry may be useful for discriminating among olive oils of different commercial categories.
2008
File in questo prodotto:
File Dimensione Formato  
ACA.pdf

solo gestori di archivio

Descrizione: Articolo
Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 604.3 kB
Formato Adobe PDF
604.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
ACA.pdf

solo gestori di archivio

Descrizione: Abstract
Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 195.2 kB
Formato Adobe PDF
195.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/416142
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 52
social impact