This paper proposes a discrete-time linear parameter varying (LPV) unknown input observer (UIO) for the diagnosis of actuator faults and ice accretion in unmanned aerial vehicles (UAVs). The proposed approach, which is suited to an implementation on-board, exploits a complete 6-degrees of freedom (DOF) UAV model, which includes the coupled longitudinal/lateral dynamics and the impact of icing. The LPV formulation has the advantage of allowing the icing diagnosis scheme to be consistent with a wide range of operating conditions. The developed theory is supported by simulations illustrating the diagnosis of actuator faults and icing in a small UAV. The obtained results validate the effectiveness of the proposed approach.
Diagnosis of Icing and Actuator Faults in UAVs Using LPV Unknown Input Observers
CRISTOFARO, ANDREA;
2017-01-01
Abstract
This paper proposes a discrete-time linear parameter varying (LPV) unknown input observer (UIO) for the diagnosis of actuator faults and ice accretion in unmanned aerial vehicles (UAVs). The proposed approach, which is suited to an implementation on-board, exploits a complete 6-degrees of freedom (DOF) UAV model, which includes the coupled longitudinal/lateral dynamics and the impact of icing. The LPV formulation has the advantage of allowing the icing diagnosis scheme to be consistent with a wide range of operating conditions. The developed theory is supported by simulations illustrating the diagnosis of actuator faults and icing in a small UAV. The obtained results validate the effectiveness of the proposed approach.File | Dimensione | Formato | |
---|---|---|---|
Diagnosis of icing and actuator faults in UAVs using LPV pre print.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
DRM non definito
Dimensione
556.98 kB
Formato
Adobe PDF
|
556.98 kB | Adobe PDF | Visualizza/Apri |
Diagnosis of icing and actuator faults in UAVs using LPV editoriale.pdf
solo gestori di archivio
Tipologia:
Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.7 MB
Formato
Adobe PDF
|
1.7 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.