Concerning the Laplace operator with homogeneous Dirichlet boundary condi- tions, the classical notion of isospectrality assumes that two domains are related when they give rise to the same spectrum. In two dimensions, non isometric, isospectral domains exist. It is not known however if all the eigenvalues relative to a specific domain can be preserved under suitable continuous deformation of its geometry. We show that this is possible when the 2D Laplacian is replaced by a finite dimensional version and the geometry is modified by respecting certain constraints. The analysis is carried out in a very small finite dimensional space, but it can be extended to more accurate finite-dimensional representations of the 2D Laplacian, with an increase of computational complexity. The aim of this paper is to introduce the preliminary steps in view of more serious generalizations.
Isospectral Domains for Discrete Elliptic Operators
FATONE, Lorella;
2018-01-01
Abstract
Concerning the Laplace operator with homogeneous Dirichlet boundary condi- tions, the classical notion of isospectrality assumes that two domains are related when they give rise to the same spectrum. In two dimensions, non isometric, isospectral domains exist. It is not known however if all the eigenvalues relative to a specific domain can be preserved under suitable continuous deformation of its geometry. We show that this is possible when the 2D Laplacian is replaced by a finite dimensional version and the geometry is modified by respecting certain constraints. The analysis is carried out in a very small finite dimensional space, but it can be extended to more accurate finite-dimensional representations of the 2D Laplacian, with an increase of computational complexity. The aim of this paper is to introduce the preliminary steps in view of more serious generalizations.File | Dimensione | Formato | |
---|---|---|---|
J Sci Comput 2018 p405.pdf
solo gestori di archivio
Tipologia:
Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.54 MB
Formato
Adobe PDF
|
1.54 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Fatone.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
DRM non definito
Dimensione
1.29 MB
Formato
Adobe PDF
|
1.29 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.