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Abstract

Concerning the Laplace operator with homogeneous Dirichlet boundary conditions,
the classical notion of isospectrality assumes that two domains are related when they
give rise to the same spectrum. In two dimensions, non isometric, isospectral domains
exist. It is not known however if all the eigenvalues relative to a specific domain can
be preserved under suitable continuous deformation of its geometry. We show that this
is possible when the 2D Laplacian is replaced by a finite dimensional version and the
geometry is modified by respecting certain constraints. The analysis is carried out in
a very small finite dimensional space, but it can be extended to more accurate finite-
dimensional representations of the 2D Laplacian, with an increase of computational
complexity. The aim of this paper is to introduce the preliminary steps in view of more
serious generalizations.

1 Introduction

Consider the Laplace problem in 2D with homogeneous Dirichlet boundary conditions de-
fined in an open set with regular boundary (see [6] for a general overview). It is known that
there are distinct domains (non isometric) such that all the infinite eigenvalues of the Laplace
operator coincide (see, e.g., Fig. 1). For this reason, these are called isospectral domains.
It can be shown that two isospectral domains have the same area. It is not known however
if it is possible to connect with continuity two isospectral domains through a sequence of
domains, by preserving the whole spectrum.

Partial answers can be given by working in a finite dimensional environment. Here, we
take a suitable approximation of the Laplace operator corresponding to a negative-definite
matrix. By varying the domain, we are interested to detect those deformations that preserve
the entire set of eigenvalues (that are now in finite number). At the same time, not all the
possible deformations are allowed, but only those belonging to a finite dimensional space
of parameters. The problem turns out to be far from easy. Indeed, already at dimension
4, things get rather involved. The question examined here concerns with the deformation
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of quadrilateral domains, with the aim of preserving the eigenvalues of discrete operators
obtained from collocation of the Laplace problem using polynomials of degree 3 in each
variable. By imposing Dirichlet homogeneous boundary conditions, the discretization matrix
ends up to be only of dimension 4× 4. The vertices of the domains are then suitably moved
by maintaining the magnitude of the four corresponding eigenvalues. The results show that,
at least in these simplified circumstances, families of isospectral domains exist and can be
connected by continuous transformations.

The most straightforward (but extremely expensive) approach is to try all the possible
allowed configurations and sort them by comparing the so obtained spectrum. Upgraded
versions consist in moving the vertices along curves, whose tangent is obtained as an ap-
plication of the Implicit Function theorem due to U. Dini (see, for example, [8]). Here,
one computes with the help of symbolic manipulation the partial derivatives, with respect
to the various parameters, of the coefficients of the characteristic polynomial of the matrix
representing the discrete operator. Different, more or less efficient, approaches have been
tested. By the way, despite its simple formulation, the problem looks rather complex and
the extension to higher dimensions or to more complicated domains looks at the moment
quite unrealistic.

2 Preliminary settings

For the convenience of the reader we briefly review some results about the classical eigenvalue

problem for the Laplace operator: ∆ = ∂2

∂x2 + ∂2

∂y2 , in an open set Ω, when homogeneous
Dirichlet boundary conditions are imposed on the boundary ∂Ω. The problem is formulated
as follows:

−∆u(x, y) = λu(x, y), (x, y) ∈ Ω, (1)

u(x, y) = 0, (x, y) ∈ ∂Ω. (2)

It is known (see, e.g.: [6]) that the spectrum of minus the Laplace operator is discrete, that
the eigenvalues are non negative and can be ordered in ascending order to form a divergent
sequence:

0 < λ1 < λ2 ≤ λ3 ≤ . . . ր ∞, (3)

with possible multiplicities. When Ω = Q =]0, 1[×]0, 1[ the eigenvalues are:

λ = π2(m2 + n2), m, n = 1, 2, 3, 4, . . . . (4)

The Weyl’s law establishes an estimate of the m-th eigenvalue in terms of the area µ2(Ω)
of the domain Ω where the eigenvalue problem is defined:

λm

m
→ 4π

µ2(Ω)
, for m → ∞. (5)

This relation leads us to the following consequence. For a given λ, one denotes by N(λ) the
number of eigenvalues smaller than λ. Then, a Weyl’s theorem states that:

N(λ) ≈ µ2(Ω)

4π
λ. (6)
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It turns out that, if two distinct domains produce the same set of eigenvalues (i.e., they
are isospectral), they must have the same area. A refinement of property (6) brings to the
relation:

N(λ) ≈ µ2(Ω)

4π
λ− µ1(∂Ω)

4π

√
λ, (7)

known as Weyl’s conjecture, which also involves the length of the perimeter ∂Ω, i.e. µ1(∂Ω).
This means that, provided the conjecture is verified, isospectral domains also share the same
perimeter.

The existence of (non isometric) isospectral domains has been established quite recently.
The problem was firstly formulated in [7], where the author was wondering if the eigenspec-
trum of the Laplacian was sufficient to detect the shape of the domain (put in other words:
if one can hear the shape of a drum). In the 2D plane, the negative answer appeared in
[5], where distinct domains (see, for example, Fig. 1) exhibiting identical sets of eigenvalues,
were proposed. Preliminary results in this direction were investigated in [9]. Successive
examples have been discussed for instance in [1] and [2]. Nowadays, wide classes of isospec-
tral domains are available. For the sake of brevity, we address the reader to the specialized
literature for more insight.

Some facts are still not known however, as for instance the existence of 2D isospectral
domains of convex type, or the possibility to vary with continuity the shape of a given
domain maintaining at the same time its entire spectrum. This last property is the one we
are going to investigate in this paper, when the Laplace operator is substituted by a very
rough finite-dimensional version. In fact, in this paper we want to see if, under suitable
simplified hypotheses, it is possible to connect with continuity two isospectral domains
through a sequence of domains, by preserving the whole spectrum.

Our first goal is to define a general set of quadrilateral domains. Afterwords, starting
from a given member of the family, we will try to find other members that are isospectral to
it. The notion of isospectrality is decided according to a finite-dimensional elliptic operator
that is going to be introduced in Sect. 3. First of all, we need to exclude as much as
possible, the chance of having isometric domains in the family, i.e, quadrilaterals that can
be related through elementary operations, such as translation, rotation and symmetry. Of
course, two isometric domains are automatically isospectral and we would like to avoid such
trivial connections.

From now on we assume that one of the sides of our quadrilaterals is “nailed” to the
x-axis of the plane. Moreover in the future, we shall avoid those cases in which a couple of
sides may intersect at some internal point.

Let n be a positive integer, R be the set of real numbers, Rn be the n-dimensional real
Euclidean space. Let Q ⊂ R

2 be the unit square in the space R
2, i.e., Q is the quadrilateral

of vertices V1 = (0, 0), V2 = (1, 0), V3 = (0, 1), V4 = (1, 1) (see Fig. 2). Given the real
parameters α, β, γ, δ, let Q̂ ⊂ R

2 be the generic quadrilateral of our family, having vertices
V̂1 = (0, 0), V̂2 = (1, 0), V̂3 = (α, β), V̂4 = (γ, δ) (see again Fig. 2). The domains Q and Q̂
are open.

In the plane with coordinates (x̂, ŷ), we now focus our attention on the eigenvalue problem
for the Laplace operator defined in Ω = Q̂, with homogeneous Dirichlet boundary conditions

3



Figure 1: Two isospectral domains in R
2. They have the same area and the same perimeter.

Moreover, they have the same sound, i.e. they share an identical sequence of Laplace
eigenvalues.
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Figure 2: (a) The unit square Q. (b) The generic quadrilateral Q̂.
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on the piecewise smooth boundary ∂Q̂. Translating into formulas, we have:

−∆û(x̂, ŷ) = λû(x̂, ŷ), (x̂, ŷ) ∈ Q̂, (8)

û(x̂, ŷ) = 0, (x̂, ŷ) ∈ ∂Q̂, (9)

where ∆ =
∂2

∂x̂2
+

∂2

∂ŷ2
.

For convenience, let us map problem (8), (9) into the following modified version, defined
in the square Q:

Lu(x, y) = λu(x, y), (x, y) ∈ Q, (10)

u(x, y) = 0, (x, y) ∈ ∂Q, (11)

where L turns out to be a suitable positive-definite elliptic operator that we are going to
define here below. To this scope let us examine the transformation x̂ = θ1(x, y), ŷ = θ2(x, y)
that allows us to bring the operator ∆ into L. First of all let us transform a general
quadrilateral Q̂ into the reference square Q. We use a classical invertible mapping θ : Q → Q̂
consisting of polynomials of degree one in each variable. This relates the ordered points V1,
V2, V3, V4 of Q with the ordered points V̂1, V̂2, V̂3, V̂4 of Q̂ (see Fig. 2). The two components
of the transformation θ = (θ1, θ2) are given by:

θ1 : x̂ = x+ αy + (γ − 1− α)xy, (12)

θ2 : ŷ = βy + (δ − β)xy. (13)

Thus, a function û defined in Q̂ is associated with the function u = û(θ) defined in Q.
By applying the change of variables to the Laplace operator ∆ we arrive at the eigenvalue
problem (10), (11) where the operator L is defined as follows (see [4]):

L = f1
∂2

∂x2
+ f2

∂2

∂x∂y
+ f3

∂2

∂y2
+ f4

∂

∂x
+ f5

∂

∂y
, (14)

and the coefficients of L in (14) are given by:

f1 = − 1

σ2

[

(

∂θ1
∂y

)2

+

(

∂θ2
∂y

)2
]

, f2 =
2

σ2

[

∂θ1
∂x

∂θ1
∂y

+
∂θ2
∂x

∂θ2
∂y

]

,

f3 = − 1

σ2

[

(

∂θ1
∂x

)2

+

(

∂θ2
∂x

)2
]

, f4 =
f2
σ

[

∂θ1
∂y

∂2θ2
∂x∂y

− ∂θ2
∂y

∂2θ1
∂x∂y

]

, (15)

f5 =
f2
σ

[

∂θ2
∂x

∂2θ1
∂x∂y

− ∂θ1
∂x

∂2θ2
∂x∂y

]

,

where

σ =
∂θ1
∂x

∂θ2
∂y

− ∂θ1
∂y

∂θ2
∂x

, (16)

is the determinant of the Jacobian of θ.
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In the future, instead of solving the eigenvalue problem directly on Q̂, we will find more
convenient to approach the transformed eigenvalue problem defined in Q. That is, instead
of approaching problem (8), (9) we consider problem (10), (11) where L is defined in (14).
It is straightforward to check that L = ∆ when Q̂ = Q.

As explained with more details in Sect. 4, it is also convenient to introduce a new
parameter c > 0. Through the homothety centered at the origin (0, 0), we associate a
generic point p̂ of the plane (x̂, ŷ) to the point

√
c p̂. In this way, any given eigenvalue λ of

∆ in the domain Q̂ takes the form λ/c in the new domain
√
c Q̂. By this trick, without too

much effort, we can enlarge the set of quadrilaterals at our disposition.

3 The discrete operator

In the referring domain Q we now build a discrete elliptic operator corresponding to a very
rough approximation of the operator L defined in (14). Indeed, we do not want to handle too
many eigenvalues. The reason is that the family of quadrilateral domains introduced in the
previous section only depends on five degrees of freedom (that is α, β, γ, δ, c). Therefore, the
isospectrality will be judged on the basis of very few eigenvalues. Our discretized operators
correspond to 4 × 4 matrices, so that we can only account on four eigenvalues. This is the
maximum number that allows us to find continuously connected subfamilies of isospectral
domains. In fact, having more eigenvalues to handle can lead to an unsolvable problem,
since we do not have enough parameters to deform the domains. Thus, we will look for
a curve in the five-dimensional space, in such a way four nonlinear equations (expressing
the coincidence of the eigenvalues in relation to an initial given quadrilateral) have to be
simultaneously satisfied.

A first basic approach consists in implementing the classical finite difference method to
approximate the operator L defined (14) and related to the eigenvalue problem (10), (11).
We recall that, when the quadrilateral Q̂ coincides with the square Q, one has L = ∆, û = u
and the corresponding eigenvalue problem is given by (1), (2).

We take a uniform grid with step size h in the unit square Q ∪ ∂Q, both in the x and y
directions. In particular, we divide the interval [0, 1] into three equal subintervals of length
1

3
. The corresponding grid points are defined by:

G : (xi, yj) = (hi, hj) = (1
3
i, 1

3
j), i, j = 0, 1, 2, 3. (17)

Let p1 =
(

1

3
, 1

3

)

, p2 =
(

2

3
, 1

3

)

, p3 =
(

1

3
, 2

3

)

, p4 =
(

2

3
, 2

3

)

be the internal points of the grid G.
In these circumstances using centered finite differences and taking into account the van-

ishing Dirichlet boundary condition on the boundary of Q (see (11)), we have that the

differential operators ∂2

∂x2 ,
∂2

∂x∂y ,
∂2

∂y2 ,
∂
∂x and ∂

∂y , can be, respectively, approximated with
the discrete operators Dxx,G, Dxy,G, Dyy,G, Dx,G and Dy,G given by the following 4 × 4
matrices:

Dxx,G = 9









−2 1 0 0
1 −2 0 0
0 0 −2 1
0 0 1 −2









, Dxy,G =
9

4









0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0









,
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Dyy,G = 9









−2 0 1 0
0 −2 0 1
1 0 −2 0
0 1 0 −2









, Dx,G =
3

2









0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0









, (18)

Dy,G =
3

2









0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0









.

Finally, given the functions fi, i = 1, 2, 3, 4, 5, in (15) and defined the five 4× 4 matrices:

Fi =









fi(p1) 0 0 0
0 fi(p2) 0 0
0 0 fi(p3) 0
0 0 0 fi(p4)









, i = 1, 2, 3, 4, 5, (19)

we have that the finite differences operator Lfd approximating the differential operator L
on the grid G can be written as follows:

Lfd = F1 ·Dxx,G + F2 ·Dxy,G + F3 ·Dyy,G + F4 ·Dx,G + F5 ·Dy,G, (20)

where · denotes the usual matrix multiplication. In this way the discrete eigenvalue problem
associated to problem (10), (11) can be written as:

Lfd ~v = λfd ~v, (21)

where the eigenvector ~v belongs to R
4.

Better discretizations of ∆ and L are obtained by spectral collocation. In this simple
circumstance one can use polynomials of degree three in each variable. They must satisfy the
vanishing constraint on the boundary of Q, so that one easily checks that the dimension of
the approximating space is reduced to four degrees of freedom. Thus, we collocate equation
(10) at the four inner grid points in order to close the system.

Indeed, we can also generalize the grid by introducing a new parameter κ, with 0 < κ < 1

2
,

and by considering the following set of points in the unit square Q ∪ ∂Q:

Ḡ : (x̄i, ȳj), i, j = 0, 1, 2, 3, (22)

where
(x̄0, x̄1, x̄2, x̄3) = (ȳ0, ȳ1, ȳ2, ȳ3) = (0, κ, 1− κ, 1). (23)

Of course, the internal nodes are: p̄1 = (κ, κ), p̄2 = (1− κ, κ), p̄3 = (κ, 1− κ), p̄4 =
(1− κ, 1− κ). They correspond to the classical uniform grid when κ = 1/3. Another
suitable choice is to set κ = 1

2
− 1

2
√
5
. In this way the values 2κ− 1 and 1− 2κ are the zeros

of the first derivative of the Legendre polynomial P3.
Let us now consider a generic polynomial of degree 3 in each of the two variables x and

y:
P(x, y) = a11l1(x)l2(y) + a12l1(x)l2(y) + a21l2(x)l1(y) + a22l2(x)l2(y), (24)
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for some coefficients aij ∈ R, i, j = 1, 2. In (24) l1, l2 are the one-dimensional Lagrange
polynomials of degree 3 with respect to the nodes: 0, κ, 1 − κ, 1. In particular l1 and l2
vanish at the endpoints, and we have:

l1(x) =
x(x− 1)(x+ κ− 1)

κ(κ− 1)(2κ− 1)
, l2(x) = − x(x− 1)(x− κ)

κ(κ− 1)(2κ− 1)
. (25)

By calculating explicitly the derivative of P and collocating at the grid points in (22),
one obtains the 4 × 4 matrices: Dxx,Ḡ, Dxy,Ḡ, Dyy,Ḡ, Dx,Ḡ and Dy,Ḡ, approximating,

respectively, the differential operators ∂2

∂x2 ,
∂2

∂x∂y ,
∂2

∂y2 ,
∂
∂x and ∂

∂y .

Finally, as in (20), a spectral discretization Lsp of the operator L in the domain Q takes
the form:

Lsp = F1 ·Dxx,Ḡ + F2 ·Dxy,Ḡ + F3 ·Dyy,Ḡ + F4 ·Dx,Ḡ + F5 ·Dy,Ḡ, (26)

where the matrices Fi, i = 1, 2, 3, 4, 5, are defined in (19). This leads us to the eigenvalue
problem:

Lsp ~v = λsp ~v, (27)

where the eigenvector ~v belongs to R
4.

We now discuss some practical cases. Suppose that Q̂ = Q, i.e., we are dealing with
problem (1), (2). From (4) we have that the first four exact eigenvalues of minus the
Laplace operator (−∆) in the square are: (2π2, 5π2, 5π2, 8π2) ≈ (19.74, 49.35, 49.35, 78.96).
Regarding the discretization of −∆ by finite differences we find: (λfd,1, λfd,2, λfd,3, λfd,4) =
(18, 36, 36, 54). These values coincide with those of the spectral approximation for κ = 1

3
. By

using the spectral approximation with κ = 1

2
− 1

2
√
5
we obtain instead (λsp,1, λsp,2, λsp,3, λsp,4) =

(20, 40, 40, 60).
Taking into account the quadrilateral Q̂ with vertices V̂1 = (0, 0), V̂2 = (1, 0), V̂3 =

(−0.2, 1.1), V̂4 = (1.2, 1.3) shown in Fig. 2 we find that the solution of (21) produces
the eigenvalues (λfd,1, λfd,2, λfd,3, λfd,4) = (12.54, 24.79, 25.43, 38.30). Approximating L
with (26) and κ = 1

3
and solving (27) we find the following set of positive eigenvalues:

(λsp,1, λsp,2, λsp,3, λsp,4) = (12.52, 24.63, 25.98, 38.05), while using the spectral approxima-
tion (27) with κ = 1

2
− 1

2
√
5
we obtain (λsp,1, λsp,2, λsp,3, λsp,4) = (13.92, 27.30, 28.59, 43.11).

4 First attempts

Given the family of quadrilateral domains Q̂ ⊂ R
2 of vertices V̂1 = (0, 0), V̂2 = (1, 0),

V̂3 = (α, β), V̂4 = (γ, δ), we begin our study by fixing an initial quadrilateral Q̂∗ of vertices
V̂ ∗
1 = V̂1 = (0, 0), V̂ ∗

2 = V̂2 = (1, 0), V̂ ∗
3 = (α∗, β∗), V̂ ∗

4 = (γ∗, δ∗) with c = 1 (see Fig. 3).
From now on the superscript ∗ is used to point out that the domain Q̂∗ has been fixed, and
we would like to examine what happens in its neighborhood in terms of isospectrality.

As shown in Sect. 3, the quadrilateral Q̂∗ is mapped to the referring square Q producing
the new operator L. By using the finite difference approximation (20) or spectral collocation
as in (26), the discrete operator can be either represented by the 4 × 4 matrix Lfd or by
Lsp. Correspondingly, problems (21) or (27) must be solved.

8
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Figure 3: (a) The quadrilateral Q̂∗. Other possible quadrilaterals in the h-range are obtained
by selecting a point in each one of the two grids surrounding the vertices on top. (b)
Magnification of the area around the vertex V̂ ∗

4 = (γ∗, δ∗), showing the right-hand side grid
points.

From now on, we only work with Lsp with κ = 1

3
and, by solving (27), we find four positive

eigenvalues, that will be denoted by λ∗
sp,1, λ

∗
sp,2, λ

∗
sp,3, λ

∗
sp,4. For example, as anticipated in

the previous section, by taking the quadrilateral Q̂∗ of vertices

V̂ ∗
1 = (0, 0), V̂ ∗

2 = (1, 0), V̂ ∗
3 = (−0.2, 1.1), V̂ ∗

4 = (1.2, 1.3), (28)

shown in Fig. 2 (see also Fig. 3) and solving (27) with κ = 1

3
, we obtain the following

outcome:
(λ∗

sp,1, λ
∗
sp,2, λ

∗
sp,3, λ

∗
sp,4) = (12.52, 24.63, 25.98, 38.05). (29)

Our goal is to see if there exist other quadrilaterals leading to the same set of eigenvalues
and if these can be connected by a curve. The reason why we did not start our analysis with
the unit square Q and its isospectral companions will be clarified later on in Sect. 7.

Since we do not have at the moment any theoretical result, a rough way to have an idea of
what happens it to check methodically a great number of quadrilaterals in the neighborhood
of the initial one. To this purpose, we construct two little squares with sides of length l
centered at the points (α∗, β∗) and (γ∗, δ∗) as shown in Fig. 3. After defining appropriate
grids of given size h in these two squares, we try all the possible combinations. For each
couple of grid-points (one in the first square and one in the second square) we have a
quadrilateral (recall that V̂ ∗

1 = (0, 0) and V̂ ∗
2 = (1, 0) have been fixed). From this we deduce

a 4× 4 matrix, and finally four eigenvalues. We call the set of all quadrilaterals obtained in
this fashion: h-range.

We then select those configurations in the h-range displaying the same eigenvalues given
in (29), up to a prescribed error ǫ. We can call these special domains ǫ-isospectral. The
sizes of h and ǫ have to be set up with the aim of finding reasonable outcomes. In fact, if ǫ
is too large we may end up with too many ǫ-isospectral domains; otherwise for ǫ too small
we could discover that the only acceptable domain is the starting one Q̂∗. Similar situations
could also occur by selecting h inappropriately. The procedure is quite costly, especially

9



Q̂∗

Figure 4: Shape of some of the ǫ-isospectral domains related to the initial quadrilateral Q̂∗

of Fig. 3 (a). The coordinates of their vertices have been previously multiplied by
√
c. In

this fashion, for c 6= 1, the second vertex on bottom does not coincide with (1, 0).

for small h and ǫ. This is the reason why in the next sections we look for something more
convenient from the numerical viewpoint.

Unfortunately, the results of this analysis are not encouraging. Indeed, it seems that
there are no enough degrees of freedom to play with, and this is the reason why in Sect. 2
we introduced the new parameter c. This is an amplification (or reduction) factor that allows
us to include in the set of possible ǫ-isospectral candidates other quadrilaterals. These are
obtainable through a suitable homothety centered in (0, 0). Through this homothety we
associate a generic point p̂ of the plane (x̂, ŷ) to the point

√
c p̂. In this way, any given

eigenvalue λsp of Lsp relative to a generic domain Ω takes the form λsp/c in the new domain√
c Ω. By this trick, without too much effort, we can enlarge the set of quadrilaterals at our

disposition.
Thus, we argue as follows. For a given domain in the h-range, we will also accept eigen-

values that are proportional to those in (29) through a multiplicative constant depending
on c. To this end we set c = λsp,1/λ

∗
sp,1. Afterwards the domains are going to be selected

according to the formula:

(

∑4

k=1
(λsp,k − c λ∗

sp,k)
2

∑4

k=1
(λ∗

sp,k)
2

)1/2

≤ ǫ. (30)

If the above inequality is satisfied for c = 1, the corresponding quadrilateral is directly
ǫ-isospectral to the starting one. If c 6= 1, then the actual ǫ-isospectral quadrilateral is
obtained by multiplying the coordinates by the constant

√
c.

For example, starting from the quadrilateral Q̂∗ in (28) shown in Fig. 3 (which eigenvalues
are listed in (29)), we adopted the above procedure based on the parameters: l = 0.1,
h = 0.0036 and ǫ = 10−4. A family of 47 ǫ-isospectral domains in the h-range was obtained.
Some of these are displayed in Fig. 4. Concerning the operator Lfd in (20), preliminary
results of this type were found in [3].

We checked areas and perimeters of the 47 ǫ-isospectral domains. Within a tolerance
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Figure 5: Zoom of the little squares of Fig. 3 (a). The marked points are the vertices of the
ǫ-isospectral domains starting from the quadrilateral Q̂∗ in (28).

of 10−3, 46 out of 47 quadrilaterals (including Q̂∗) share the same area, and 29 have the
same perimeter. Note that, in our discrete case, we cannot rely on a result similar to
that of Weyl for the continuous case. Nevertheless, the discovery that areas are (almost)
preserved, besides being in agreement with predictions, is an excellent tool to decide a priori
if a domain is appropriate. Indeed, before directly computing the eigenvalues, one can filter
those domains that, up to a certain accuracy, share with the initial one the same area. This
preliminary control saves a lot of computational time.

Note that the vertex V̂1 = (0, 0) remains fixed, while the vertex V̂2 shifts horizontally.
This means that, except for the initial configuration where the parameter c is equal to
one, the values of c are in general different from one. The plots in Fig. 5 are the zooms
of the two little squares with sides of length l = 0.1 of Fig. 3 centered at the points
(α∗, β∗) = (−0.2, 1.1) and (γ∗, δ∗) = (1.2, 1.3). From these images we can conjecture the
existence of a continuous path joining the various ǫ-isospectral domains. Although only
based on heuristic considerations, the guess seems to be confirmed by further tests, where
h and ǫ are conveniently taken smaller and smaller. We can be more precise in the coming
sections, where appropriate strategies will be developed to prove the existence of these curves
and detect them.

Similar results are obtained by varying the configuration of the initial quadrilateral Q̂∗.
We suggest however to set the initial parameters α∗, β∗, γ∗, δ∗ in order to stay away from
some critical situations that will be analyzed more in detail in Sect. 7.

5 Implementation of the Implicit Function theorem

From the experiments of the previous section, our guess is that a curve joining isospectral
quadrilaterals actually exists. It is a one-parameter function embedded in the 5 dimensional
space spanned by the parameters α, β, γ, δ, c. We can track it by observing that it is
implicitly characterized through four functional equations. We can follow the curve by
computing locally its tangent vector and this can be done with the help of the Implicit
Function theorem (see, for example, [8]). Actually, in circumstances in which such a theorem
is applicable, we automatically have an existence result, at least at local level.

We recall that a generic quadrilateral Q̂ has vertices of the form V̂1 = (0, 0), V̂2 = (1, 0),
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V̂3 = (α, β), V̂4 = (γ, δ). Afterwords, for i = 1, 2, 3, 4, let λsp,i be the eigenvalues in
ascending order of the discrete problem (27). Clearly, each one of these quantities depends
on the parameters α, β, γ, δ, i.e.:

λsp,i = λsp,i(α, β, γ, δ), i = 1, 2, 3, 4. (31)

Now, the eigenvalues (31) can be seen as the roots of the following characteristic polynomial:

q(z) = z4 + ξ3z
3 + ξ2z

2 + ξ1z + ξ0, (32)

where the coefficients ξk, k = 0, 1, 2, 3, are computed from the entries of the matrix Lsp

defined in (26). As a consequence these coefficients also depend on α, β, γ, δ, that is ξk =
ξk(α, β, γ, δ), k = 0, 1, 2, 3.

As done in the previous section, we can work around an initial domain Q̂∗ of fixed
vertices V̂ ∗

1 = V̂1 = (0, 0), V̂ ∗
2 = V̂2 = (1, 0), V̂ ∗

3 = (α∗, β∗), V̂ ∗
4 = (γ∗, δ∗) with c = 1. For

instance, we can start from the quadrilateral Q̂∗ specified in (28) and shown in Fig. 3, whose
corresponding eigenvalues are listed in (29). Accordingly, λ∗

sp,i, i = 1, 2, 3, 4, are the roots
of the following characteristic polynomial:

q∗(z) = z4 + ξ∗3z
3 + ξ∗2z

2 + ξ∗1z + ξ∗0 , (33)

where now the coefficients ξ∗k, k = 0, 1, 2, 3, are given real numbers. For example, starting

from the quadrilateral Q̂∗ in (28), we have:

(ξ∗3 , ξ
∗
2 , ξ

∗
1 , ξ

∗
0) = (101.18, 3675.65, 56468.45, 304819.78). (34)

Thus, a certain quadrilateral Q̂ 6= Q̂∗ (with vertices V̂1 = (0, 0), V̂2 = (1, 0), V̂3 = (α, β),
V̂4 = (γ, δ)) is isospectral to Q̂∗ if and only if q and q∗ have the same roots, i.e., one has
ξk = ξ∗k, k = 0, 1, 2, 3. We can weaken this condition by introducing the parameter c > 0.
Indeed, we can also accept situations where the eigenvalues are proportionally related as
follows:

c =
λsp,i

λ∗
sp,i

, i = 1, 2, 3, 4. (35)

If c = 1, Q̂ turns out to be directly isospectral to Q̂∗. If c 6= 1, the new domain
√
c Q̂,

obtained by homothety, is also isospectral to Q̂∗ (note that in this case the second vertex V̂2

becomes (
√
c, 0)). We can now translate condition (35) in terms of polynomial coefficients,

obtaining:

c4−k =
ξk
ξ∗k

, k = 1, 2, 3, 4. (36)

In the end, we propose to introduce the four functions Fk = Fk(α, β, γ, δ, c), k = 0, 1, 2, 3,
of the five variables α, β, γ, δ, c, defined as follows:

Fk(α, β, γ, δ, c) = ξk − c4−k ξ∗k, k = 0, 1, 2, 3, (37)

and look for values such that:

Fk = 0, k = 0, 1, 2, 3. (38)
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If we are lucky, there is a local curve Φ(t) ∈ R
5, t ∈ [−T, T ], T > 0, described by the

functions α(t), β(t), γ(t), δ(t), c(t), passing through the point P
∗ of coordinates α∗, β∗,

γ∗, δ∗, c = 1 (i.e., the parameters identifying the initial quadrilateral Q̂∗ as in (28)) and
connecting isospectral domains.

In order to follow such a curve Φ, we need to find its local tangent vector. We can express
the various parameters in function of one of them. We fix for example β(t) = β∗ + t, with
t ∈ [−T, T ], so that β(0) = β∗. We then differentiate with respect to t the four equations in
(38), arriving at the system:





























∂F0

∂α

∂F0

∂γ

∂F0

∂δ

∂F0

∂c

∂F1

∂α

∂F1

∂γ

∂F1

∂δ

∂F1

∂c

∂F2

∂α

∂F2

∂γ

∂F2

∂δ

∂F2

∂c

∂F3

∂α

∂F3

∂γ

∂F3

∂δ

∂F3

∂c























































dα

dt

dγ

dt

dδ

dt

dc

dt



























=





























−∂F0

∂β

−∂F1

∂β

−∂F2

∂β

−∂F3

∂β





























, (39)

in the unknowns α′(t) = dα
dt , γ

′(t) = dγ
dt , δ

′(t) = dδ
dt and c′(t) = dc

dt .
At this point, it is important to observe that the functions Fk, k = 0, 1, 2, 3, in (37)

and their derivatives are explicitly known, although their expressions may result rather
complicated. In fact, starting from α, β, γ, δ, one can build the coefficients of the mapping
into the referring square. Successively, always in function of these parameters, one writes
the matrix Lsp defined in (26). Finally, a closed form is also known for the coefficients of the
characteristic polynomial (this is not true instead for the eigenvalues). Of course, from the
practical viewpoint, these computations can only be carried out with the help of a software
running with symbolic manipulation.

Going through this calculation, we find that the determinant of the matrix in (39) is
different from zero at P

∗. Therefore, one is able to theoretically detect a value T > 0,
such that a curve Φ(t) ∈ R

5, t ∈ [−T, T ], described by the parameters α(t), β(t) = β∗ + t,
γ(t), δ(t), c(t), actually exists in the interval t ∈ [−T, T ]. For t = 0, we have Φ(0) =
(α∗, β∗, γ∗, δ∗, 1) = P

∗.
The following first-order explicit iteration method can be adopted in order to follow the

curve, at least locally. Recall that, given T > 0, we have chosen β(t) = β∗ + t, t ∈ [−T, T ].
For simplicity let us fix our attention on positive value of the variable t (indeed similar
arguments may also be applied when t is negative) and, given an integer M > 0, let us
discretize the interval [β∗, β∗ + T ] with a uniform grid tm, m = 0, . . . ,M , with step size
δt = T

M , that is:

tm = β∗ +mδt = β∗ +m
T

M
, m = 0, . . . ,M. (40)

Our curve Φ is going to be approximated by the quantities Φm ≈ Φ(tm), m = 0, . . . ,M . In
particular Φ0 = Φ(0) = P

∗. At each step, the exact derivatives α′(tm), γ′(tm), δ′(tm) and
c′(tm), m = 0, . . . ,M , are computed by solving (39) (note that β′(tm) = 1, m = 0, . . . ,M).
These exact derivatives are organized in the correcting vector Ψm, m = 0, . . . ,M . The
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Figure 6: Projections of the curve Φ(t) ∈ R
5, t ∈ [−T, T ] = [−0.06, 0.06], in the planes (α, β)

and (γ, δ). These have been found with the help of the Implicit Function theorem and the
iteration algorithm (41).

tm
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c(
t m

)
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1
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1.1

Figure 7: Plot of the points (tm, c(tm)), m = 0, . . . ,M , corresponding to the curves of Fig. 6.
We recall that

√
c is an amplification (or reduction) factor, used to adjust the size of the

domains, employed as an additional parameter to ensure isospectrality.

algorithm is then based on the following iteration:

Φm+1 = Φm + δtΨm m = 0, . . . ,M − 1. (41)

A similar procedure can be used to approximate the curve Φ in the interval [−T, 0].
For example, we discuss the case of the quadrilateral Q̂∗ in (28) shown in Fig. 3 and we

take β(t) = β∗ + t = 1.1+ t, t ∈ [−T, T ] = [−0.06, 0.06]. We apply (41) with M = 100, both
for positive and negative values of t. Fig. 6 and Fig. 7 show, respectively, the projections
of Φm, m = 0, . . . ,M , in the planes (α, β), (γ, δ) and the graph (tm, c(tm)), m = 0, . . . ,M .
These results confirm what was predicted in the previous section.

As expected, the shapes of the projections of the curve turn out to be exactly the same
if, instead of the parameter β, another parameter is assumed to be explicit.
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6 Other approaches

The use of symbolic manipulation, in order to compute the exact tangent vector to the curve
Φ at a given point, is certainly expensive, ill-conditioned and difficult to be generalized. It
has been however an important theoretical tool to establish the local existence of the curve.
In this section we propose an alternative numerical procedure, far more cheaper but with
similar performances.

In line with the arguments invoked in Sect. 5 and using the same notation we have that,
if the curve Φ has to connect isospectral domains, the eigenvalues λsp,i/c, i = 1, 2, 3, 4, in
(35) must remain the same as t varies. In particular we have: λ∗

sp,i = λsp,i/c, i = 1, 2, 3, 4.
That is, having in mind (31), the four functions Gi = Gi(α, β, γ, δ, c), i = 1, 2, 3, 4, of the five
variables α, β, γ, δ, c, defined as follows:

Gi(α, β, γ, δ, c) =
λsp,i

c
, i = 1, 2, 3, 4, (42)

must be constant, i.e., their derivatives with respect to t are zero. By differentiating (42)
with respect to t and by expressing the various parameters in function of one of them, we
find the approximated local tangent vector to the curve Φ.

As in Sect. 5 let us fix for example β(t) = β∗ + t, with t ∈ [−T, T ], so that β(0) = β∗.
The new linear system takes the form:





























c
∂λsp,1

∂α
c
∂λsp,1

∂γ
c
∂λsp,1

∂δ
−λsp,1

c
∂λsp,2

∂α
c
∂λsp,2

∂γ
c
∂λsp,2

∂δ
−λsp,2

c
∂λsp,3

∂α
c
∂λsp,3

∂γ
c
∂λsp,3

∂δ
−λsp,3

c
∂λsp,4
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∂λsp,4
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∂λsp,4

∂δ
−λsp,4























































dα

dt

dγ

dt

dδ

dt

dc

dt
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−c
∂λsp,1

∂β

−c
∂λsp,2

∂β

−c
∂λsp,2

∂β

−c
∂λsp,2

∂β





























, (43)

in the unknowns α′(t) = dγ
dt , γ

′(t) = dγ
dt , δ

′(t) = dδ
dt and c′(t) = dc

dt .
Since now the explicit expression of the partial derivatives in (43) is not available, the

entries of the matrix are approximated by classical finite differences, that is, for example,
given an increment dα, we can compute ∂λsp,i/∂α, i = 1, 2, 3, 4, as follows:

∂λsp,i

∂α
≈ λsp,i(α + dα, β, γ, δ, c)− λsp,i(α, β, γ, δ, c)

dα
, i = 1, 2, 3, 4. (44)

Similar formulae can be used to approximate the other entries of the matrix in (43).
Finally, we use the uniform grid (40) when t is positive (or its opposite when t is negative).

At step m, we evaluate the approximations of α′(tm), γ′(tm), δ′(tm) and c′(tm), m =
0, . . . ,M (note that β′(tm) = 1, m = 0, . . . ,M), by solving a system similar to that in (43),
where partial derivatives have been replaced with incremental ratios. We put the so obtained
values in the current vector Ψ̄m, m = 0, . . . ,M . Thus, a rough approximation of Φ(tm) is
given by the quantities Φ̄m, m = 0, . . . ,M , recovered by recursion from the following explicit
iteration method:

Φ̄k+1 = Φ̄k + δt Ψ̄k k = 0, . . . ,M − 1, (45)
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Table 1: Relative errors of the areas in relation to the initial position.

β∗ + t M = 5 and δt =0.012 M = 10 and δt=0.006 M = 20 and δt =0.003

1.040 11.70 e-04 10.30 e-04 9.65 e-04
1.052 9.91 e-04 8.69 e-04 8.12 e-04
1.064 7.83 e-04 6.84 e-04 6.37 e-04
1.076 5.48 e-04 4.76 e-04 4.43 e-04
1.088 2.87 e-04 2.48 e-04 2.30 e-04
1.1 0 0 0
1.112 1.53 e-04 1.89 e-04 2.07 e-04
1.124 3.09 e-04 3.85 e-04 4.25 e-04
1.136 4.67 e-04 5.89 e-04 6.54 e-04
1.148 6.26 e-04 8.00 e-04 8.92 e-04
1.160 7.86 e-04 10.19 e-04 11.42 e-04

starting from Φ̄0 = Φ(0) = P
∗.

Given the quadrilateral Q̂∗ corresponding to (28) and shown in Fig. 3, by taking β(t) =
β∗ + t = 1.1 + t, t ∈ [−T, T ] = [−0.06, 0.06], we apply the iteration method (45), both
for positive and negative values of t. Different values of the step size δt = T

M are used. In
particular we chooseM = 10, 30, 50. In Fig. 8 we show the projections of Φ̄m, m = 0, . . . ,M ,
in the planes (α, β), (γ, δ). As δt diminishes, the graphs of Fig. 8 approach those of Fig. 6.

Also in this case the shape of the projections of the curve turn out to be qualitatively
the same if another parameter is assumed to be explicit (instead of the parameter β).

This convergence behavior is a good surprise. Indeed, such a property should not be
given for granted. In fact, through (44) and similar formulae, we replaced partial derivatives
by a first-order approximation, and we introduced this correction in the first-order algorithm
(41). This double discretization does not necessarily bring to a convergent scheme.

A sort of convergence analysis can be carried out by examining the history of the quadri-
lateral areas in comparison to the area of Q̂∗, given by µ2(Q̂

∗) = 1.44. The results of some
tests are reported in Table 1. For a fixed δt the error grows linearly with the distance from
the quadrilateral Q̂∗. Nevertheless, there is no substantial decay of the error by diminishing
δt. It has also to be noted however that, in the discrete case, we do not have any theoretical
result ensuring that areas of isospectral domains must be preserved.

We finally observe that the results obtained so far do not change significantly if other
values of the parameter κ introduced in (23) are taken into account (we recall that in the
experiments reported in this paper we used κ = 1

3
).

7 The case of the square

Here, we discuss about the case of the unit square Q, i.e. the quadrilateral of vertices
V1 = (0, 0), V2 = (1, 0), V3 = (0, 1), V4 = (1, 1), and the case of other domains Q̂ of vertices
V̂1 = (0, 0), V̂2 = (1, 0), V̂3 = (α, β), V̂4 = (γ, δ) that are symmetric with respect to the
straight line y = x, that is domains Q̂ with α = 0, β = 1 and γ = δ. Of course, when α = 0,
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Figure 8: Projections of the curve Φ(t) ∈ R
5, t ∈ [−T, T ] = [−0.06, 0.06], found with the

help of the iteration algorithm (45) with M = 10 (case (a)), M = 30 (case (b)), M = 50
(case (c)). These graphs have to be compared with those of Fig. 6
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Figure 9: Zoom of the vertices of the ǫ-isospectral domains when the initial quadrilateral is
the unit square Q.

Figure 10: Deformations of the unit square Q obtained by moving independently each single
parameter. The resulting quadrilaterals are isometric.

β = 1, γ = δ = 1 we have Q̂ = Q.
In these situations using the approach proposed in Sect. 5, one can check that the de-

terminant of the matrix in (39) is always zero. We remind that in Sect. 5 we have chosen
β(t) = 1 + t, t ∈ [−T, T ], but, indeed, the determinant remains zero independently on the
explicited parameter. Moreover, for the square Q, the rank of the matrix in (39) is just one,
i.e. all the lines (or rows) of the matrix are linearly dependent. Definitely, we are not in the
situation that allows us to use the Implicit Function theorem. Nevertheless, experimentally,
one can find in the neighborhood of the unit square Q many other quadrilaterals isospectral
to it. An analysis similar to that of Sect. 4 reveals configurations as the ones shown in
Fig. 9. In this case we choose: l = 0.1, h = 0.0036 and ǫ = 5 × 10−4, and, as in Sect. 4,
we considered c = λsp,1/λ

∗
sp,1. In the neighborhood of the vertex V3 = (0, 1) on the left

of Fig. 9 the distribution of selected points does not reveal specific patterns, while for the
vertex V4 = (1, 1) on the right of Fig. 9 there is a superimposition of several curves, as it
will be evident from the discussion that follows.

A heuristic explanation of the non applicability of the Implicit Function theorem is
inspired by Fig. 10, where the four parameters −α, β, γ, δ, are varied independently (one
has to imagine that these deformations are infinitesimal). One gets four configurations
corresponding to quadrilaterals that are reciprocally isometric (by rotations or symmetries),
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Figure 11: Zoom of the vertices of the ǫ-isospectral domains starting from the unit square
Q and imposing α = 0 in the h-range.

-0.05 0 0.05
0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

V3 = (0, 1)

0.95 1 1.05
0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

V4 = (1, 1)

Figure 12: Zoom of the vertices of the ǫ-isospectral domains starting from the unit square
Q and imposing β = 1 + α in the h-range.

and therefore isospectral. This somehow explains why the Jacobian matrix in (39) has rank
equal to one. Analogous conclusions hold for other initial domains presenting symmetries.

The above considerations do not prevent however the existence of curves connecting
isospectral domains. Actually, in correspondence of the parameters associated with the
unit square Q we have a biforcation point. A deeper study shows that different curves
of isospectral quadrilaterals are obtained. For instance, we can have those of the family
associated either with the points of Fig. 11 or with the points of Fig. 12. In particular,
Fig. 13 shows the quadrilaterals corresponding to the two ways of deforming the square Q.
These two branches of isospectral domains departing from the unit square are very neat.
Nevertheless, their identification is not easy if one only examines Fig. 9. Of course, when
we started our analysis we (erroneously) thought that the case of the square was the easiest
one; only later we realized that this was far from being true.

We conclude this section with a few more experiments. We would like to figure out what
happens to the curve connecting isospectral domains when the initial quadrilateral Q̂∗ is
modified. For example, we can start from the quadrilateral Q̂∗ associated with the vertices
in (28). The corresponding isospectral family forms a curve characterized by the projections
shown in Fig. 6 (also reported in Fig. 14). Now, we deform such initial domain Q̂∗ by slowly
approaching the unit square Q. To this purpose, we fix an integer S > 1. For j = 0, . . . , S,
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Q

(a)

Q

(b)

Figure 13: Shapes of the ǫ-isospectral domains obtained by departing from the initial unit
square Q, and imposing α = 0 (case (a)) or β = 1 + α (case (b)).

the vertices of the transitory quadrilaterals Q̂j are chosen according to the law:

V̂1,j = V1 = (0, 0), V̂2,j = V2 = (1, 0),

V̂3,j = (1 − sj)V̂
∗
3 + sjV3, V̂4,j = (1− sj)V̂

∗
4 + sjV4,

sj = j/S, j = 0, . . . , S. (46)

In this way, for j = 0 in (46) we have the initial quadrilateral Q̂∗, i.e. Q̂0 = Q̂∗, while for
j = S we obtain the unit square Q, i.e. Q̂S = Q.

Since we know that, in correspondence of the unit square Q, the determinant of the
Jacobian in (39) is zero, the use of the Implicit Function theorem becomes more and more
restrictive as j increases. For this reason we need to limit the range [−Tj, Tj ] of definition
of the curve. Given T0 > 0 we propose to control this range by defining the extremes Tj ,
j = 0, . . . , S − 1, of the interval according to the rule:

Tj =
T0

1 + 2 ∗ sj
, j = 0, . . . , S − 1. (47)

We excluded the value j = S in (47) because in this case the procedure is not applicable.
Starting from the quadrilateral Q̂∗ in (28), taking S = 10 in (46) and T0 = 0.06 in (47),

we obtain the various quadrilaterals displayed in Fig. 14. For j = 0, . . . , S − 1, we locally
compute the curve of the isospectral domains related to Q̂j , indifferently with the approach
proposed in Sect. 6 or Sect. 7. The projections of these curves in the planes (α, β) and (γ, δ)
are shown in Fig. 15.

Finally, we run the same tests by using a different set of vertices V̂ ∗
k , k = 1, 2, 3, 4, of the

initial quadrilateral Q̂∗, namely:

V̂ ∗
1 = (0, 0), V̂ ∗

2 = (1, 0), V̂ ∗
3 = (0.2, 1.1), V̂ ∗

4 = (1.2, 1.3). (48)

In Fig. 16 and Fig. 17 the reader can see the results of the tests obtained by taking S = 10
in (46) and T0 = 0.06 in (47). Here the curve is twisting in a more complicated fashion.
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Figure 14: The quadrilateral Q̂∗ in (28) is transformed into the unit square Q in 10 steps.
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Figure 15: Projections of the local curves joining the corresponding isospectral domains
for each of the quadrilaterals of Fig. 14. Note that for j = 9, on the left-hand side the
corresponding curve shows a kind of turning point. It is not easy to guess how the bifurcation
point (emerging when j = S = 10) is approached.
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Figure 16: The quadrilateral Q̂∗ in (48) is transformed into the unit square Q in 10 steps.
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Figure 17: Projections of the local curves joining the corresponding isospectral domains for
each of the quadrilaterals of Fig. 16. Unfortunately, the picture is not clear on the left-hand
side. However, this test has been reported in order to emphasize the interesting behavior
developing on the right-hand side.

Scattered dots may appear in the plots. They are a consequence of the break down of the
algorithm when approaching the unit square Q. In order to get rid of them it is necessary
to further reduce the interval [−Tj, Tj], as j gets close to S.

8 Conclusions

Still remaining in finite dimension, the extension of our analysis to general domains depend-
ing on more degrees of freedom can be a severe numerical task. The main difficulty is how to
choose the family of admissible domains. They may have, for instance, a polygonal bound-
ary and the approximation of the continuous operator can be performed by finite elements.
If we are far from special symmetric configurations (as the case of the unit square consid-
ered in Sect. 7), the local application of the Implicit Function theorem should guarantee
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isospectral deformations in a small neighborhood. The one-dimensional curve now belongs
to a space of larger dimension and its grafical representation can be rather troublesome.
For visualization, the best way is probably to show animations concerning the movement of
the isospectral domains. Note that the costs of implementation can drastically become high
when increasing the degrees of freedom.

An alternative to the work presented here is to try to preserve a certain number of
eigenvalues of the exact operator. For example, concerning the family of quadrilaterals (as
those examined so far), instead of introducing a discretization based on matrices of dimension
4× 4, one can evaluate the first 4 eigenvalues of the exact Laplacian and move the domains
with the aim of preserving their values. We expect the so obtained domains to be slightly
different from the ones we found in this paper. Unfortunately, the exact eigenvalues of −∆ on
a general quadrilateral domain are not explicitly available, so that the computation should
be accompanied by an appropriate discretization on a very fine grid. Again, the complexity
of the algorithm may become unaffordable as more degrees of freedom are introduced.

The problem of finding isospectral families, connected with continuity, in order to pre-
serve all the eigenvalues of the exact Laplace operator is certainly harder than the experi-
ments we tried in this paper, and represents a stimulating theoretical challenge. We hope
however that our little contribution may be the starting point for future ideas.
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Università di Modena e Reggio Emilia (2013).

[4] D. Funaro, Spectral Elements for Transport-Dominated Equations, Lecture Notes In
Computational Science and Engineering, Volume 1, Springer-Verlag, New York (1997).

[5] C. Gordon, D. Webb, S. Wolpert, Isospectral plane domains and surfaces via Riemannian
orbifolds, Inv. Math., 110 (1), pp. 11-22 (1993).

[6] D. S. Grebenkov, B.-T. Nguyen, Geometrical structure of Laplacian eigenfuncions, SIAM
Rev., 55 (4), pp. 601-667 (2013).

[7] M. Kac, Can one hear the shape of a drum?, Am. Math. Monthly, 73, pp. 1-23 (1966).

[8] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, New York (1976).

[9] T. Sunada, Riemannian coverings and isospectral manifolds, Ann. Math., 121, pp. 169-
186 (1985).

23


	1 Introduction
	2 Preliminary settings
	3 The discrete operator
	4 First attempts
	5 Implementation of the Implicit Function theorem
	6 Other approaches
	7 The case of the square
	8 Conclusions

