Neuroblastoma (NB) is an extracranial solid cancer and the most common cancer in infancy. Despite the standard treatment for NB is based on the combination of chemotherapeutic drugs such as doxorubicin, vincristine, cyclophosphamide, and cisplatin, chemoresistance occurs over the time. The aim of the present research was to evaluate the effect of bortezomib (BTZ) (50 nM) on NB cell viability and how lipoic acid (ALA) (100 μM) modifies pharmacological response to this chemotherapeutic agent. Cell viability was assessed by ATP luminescence assay whereas expression of oxidative stress marker (i.e., heme oxygenase-1) and endoplasmic reticulum stress proteins was performed by real-time PCR, western blot, and immunofluorescence. Our data showed that BTZ treatment significantly reduced cell viability when compared to untreated cultures (about 40%). Interestingly, ALA significantly reduced the efficacy of BTZ (about 30%). Furthermore, BTZ significantly induced heme oxygenase-1 as a result of increased oxidative stress and such overexpression was prevented by concomitant treatment with ALA. Similarly, ALA significantly reduced BTZ-mediated endoplasmic reticulum stress as measured by reduction in BiP1 and IRE1α, ERO1α, and PDI expression. In conclusion, our data suggest that BTZ efficacy is dependent on cellular redox status and such mechanisms may be responsible of chemoresistance to this chemotherapeutic agent.

Effect of Lipoic Acid on the Biochemical Mechanisms of Resistance to Bortezomib in SH-SY5Y Neuroblastoma Cells

TOMASSONI, Daniele;AMENTA, Francesco;
2018-01-01

Abstract

Neuroblastoma (NB) is an extracranial solid cancer and the most common cancer in infancy. Despite the standard treatment for NB is based on the combination of chemotherapeutic drugs such as doxorubicin, vincristine, cyclophosphamide, and cisplatin, chemoresistance occurs over the time. The aim of the present research was to evaluate the effect of bortezomib (BTZ) (50 nM) on NB cell viability and how lipoic acid (ALA) (100 μM) modifies pharmacological response to this chemotherapeutic agent. Cell viability was assessed by ATP luminescence assay whereas expression of oxidative stress marker (i.e., heme oxygenase-1) and endoplasmic reticulum stress proteins was performed by real-time PCR, western blot, and immunofluorescence. Our data showed that BTZ treatment significantly reduced cell viability when compared to untreated cultures (about 40%). Interestingly, ALA significantly reduced the efficacy of BTZ (about 30%). Furthermore, BTZ significantly induced heme oxygenase-1 as a result of increased oxidative stress and such overexpression was prevented by concomitant treatment with ALA. Similarly, ALA significantly reduced BTZ-mediated endoplasmic reticulum stress as measured by reduction in BiP1 and IRE1α, ERO1α, and PDI expression. In conclusion, our data suggest that BTZ efficacy is dependent on cellular redox status and such mechanisms may be responsible of chemoresistance to this chemotherapeutic agent.
2018
File in questo prodotto:
File Dimensione Formato  
Bramanti 2017.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 2.48 MB
Formato Adobe PDF
2.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/396291
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact