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Abstract Neuroblastoma (NB) is an extracranial solid cancer
and the most common cancer in infancy. Despite the standard
treatment for NB is based on the combination of chemothera-
peutic drugs such as doxorubicin, vincristine, cyclophospha-
mide, and cisplatin, chemoresistance occurs over the time.
The aim of the present research was to evaluate the effect of
bortezomib (BTZ) (50 nM) on NB cell viability and how
lipoic acid (ALA) (100 μM) modifies pharmacological re-
sponse to this chemotherapeutic agent. Cell viability was
assessed by ATP luminescence assay whereas expression of
oxidative stress marker (i.e., heme oxygenase-1) and endo-
plasmic reticulum stress proteins was performed by real-time
PCR, western blot, and immunofluorescence. Our data
showed that BTZ treatment significantly reduced cell viability
when compared to untreated cultures (about 40%).
Interestingly, ALA significantly reduced the efficacy of BTZ
(about 30%). Furthermore, BTZ significantly induced heme
oxygenase-1 as a result of increased oxidative stress and such

overexpression was prevented by concomitant treatment with
ALA. Similarly, ALA significantly reduced BTZ-mediated
endoplasmic reticulum stress as measured by reduction in
BiP1 and IRE1α, ERO1α, and PDI expression. In conclusion,
our data suggest that BTZ efficacy is dependent on cellular
redox status and such mechanisms may be responsible of
chemoresistance to this chemotherapeutic agent.
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Introduction

Neuroblastoma (NB) is an extracranial solid cancer and the
most common cancer in infancy [1]. It is a neuroendocrine
tumor, and deriving from the neural crest component of the
sympathetic nervous system (SNS), it is capable to switch
from the highly aggressive chemoresistant disease to the spon-
taneous regression [2]. Despite the standard treatment for NB
is based on the combination of chemotherapeutic drugs such
as doxorubicin, vincristine, cyclophosphamide, and cisplatin,
chemoresistance occurs over the time. Therefore, it is impor-
tant to study and evaluate new therapeutic approaches for the
treatment of this cancer.

Bortezomib (BTZ), a reversible inhibitor of the 26S pro-
teasome, is used as counteracting drug against the multiple
myeloma (MM) [3]. However, recent experimental evidences
demonstrated that BTZ treatment is capable to overcome can-
cer cell resistance in different solid tumors, including NB [4].
In addition, it has been reported a synergistic effect when this
drug was used in combination with doxorubicin in vitro [5].
However, BTZ treatment in NB cell lines induces overexpres-
sion of heme oxygenase 1 (HO-1), which in turn leads to BTZ
resistance [6]. Similarly, our group showed that BTZ-induced

Roberto Avola and Vincenzo Bramanti contributed equally

* Roberto Avola
ravola@unict.it

1 Department of Biomedical and Biotechnological Sciences,
University of Catania, Via S. Sofia 87, 95100 Catania, Italy

2 Division of Haematology, A.O.U. BPoliclinico–Vittorio Emanuele^,
University of Catania, Via Citelli 6, 95100 Catania, Italy

3 School of Bioscience and Veterinary Medicine, University of
Camerino, via Gentile III da Varano, Camerino 62032, Italy

4 Division of Microbiology and Virology, Villa Sofia Hospital,
A.O.O.R. BVilla Sofia–Cervello^, Piazza Salerno 1,
90146 Palermo, Italy

5 School of Medicinal Sciences and Health Products, University of
Camerino, via Madonna delle Carceri 9, Camerino 62032, Italy

Mol Neurobiol
DOI 10.1007/s12035-017-0575-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s12035-017-0575-6&domain=pdf


HO-1 is involved in resistance to proteosome inhibitor and is
involved in genomic instability of MM [7]. Heme oxygenases
catalyze the degradation of heme into biliverdin, carbon mon-
oxide (CO), and ferric iron. Such upregulation represents an
intrinsic defense mechanism to maintain cellular homeostasis
and enhance cell survival [8]. In some cancer cells, HO-1 is
considered to play a major role as an essential survival factor,
protecting against chemotherapy-induced reactive oxygen
species (ROS) increase [9–14]. Interestingly, the role of HO-
1 in cancer cells has been shown to be cell-specific since in
some tumors its upregulation has been shown to be associated
with cell cycle arrest and/or death whereas in other malignan-
cies it was associated with tumor progression and survival [15,
16]. Therefore, it is important to evaluate the effects of phar-
macological interventions causing a significant modification
of redox status and resulting in a modification of cellular re-
sponse to chemotherapy. Furthermore, it is well known that
(+)lipoic acid (ALA) is a neuroprotective and antioxidant
agent able to scavenge ROS, to regenerate endogenous anti-
oxidants as well as to promote glutathione synthesis and it also
serves as metals chelator [17, 18]. It is well known that oxi-
dative stress is implicated in the development and evolution of
a lot of diseases and there are many factors related to oxidative
stress as well as to the development of several pathologies. In
this regard, previous reports demonstrated that ALA
prevented cell death induced by drugs depleting glutathione
in NB cells [17]. In fact, it is well known that oxidative stress
is implicated in the development and evolution of a lot of
diseases and there are many factors related to oxidative stress
as well as to the development of several pathologies. In addi-
tion, ROS are reactive molecules derived from the natural by-
product of the oxygenmetabolism and having significant roles
in the homeostasis and in the cell signaling. Moreover, among
the antioxidants of the latest generation, lipoic acid is capable
to fulfill many important functions of Bscavenger^ of hydrox-
yl radicals, hypochlorous acid, of oxygen singlet, and of
peroxyl radicals.

Finally, the aim of the present study was to study and eval-
uate the effect of ALA on NB redox balance and how such
effect may impact on NB response to BTZ.

Material and Methods

Cell Cultures and Treatments

NB cell lines were cultured in DMEM supplemented with
10% FBS and 1% penicillin/streptomycin at 37 °C and 5%
CO2. ALA was added 24 h before the addition of BTZ
(50 nM) for ALA/BTZ combined treatment. For estimation
of the effect of BTZ on ER-stress markers and HO-1 expres-
sion, NB cells were seeded in six-well culture plate at density
5 × 105 cell per well and treated with BTZ alone and in

combination with 5 mM 4-sodium phenylbutyrate (4PBA,
Sigma-Aldrich, Milan, Italy) for 6 and 24 h, with 10 μM
thapsigargin (Santa Cruz Biotechnology) alone and in combi-
nation with 5 mM 4-PBA for 24 h. For viability assay, NB
cells were seeded on 96-well culture plate (Eppendorf, Milan,
Italy) at density 1 × 104 cell per well, and subsequently treated
with 100 μM of ALA. After 24 h, 50 nM BTZ alone and in
combination with ALAwas added to cell cultures for 24 h. All
agents were diluted directly in cell culture medium.

Cell Viability Assay

Cell viability was assessed using ATPlite 1step assay
(PerkinElmer, Milan, Italy) according to the manufacturers’
protocol. Briefly, the 96-well black culture plate was taken
from the incubator and equilibrated at room temperature for
30 min. Subsequently, to each well containing 100 μl of the
cell suspension (5 × 105 cells/ml), 100 μl of reconstituted
reagent was added and the plate was shaken for 20 min at
700 rpm using orbital shaker (Stuart Scientific, Staffordshire,
UK). The luminescence was measured using Victor3
(PerkinElmer, Milan, Italy). Viability of the cells was
expressed as percentage of vitality of untreated cells.

Gene Expression Analysis by Real-Time PCR (qRT-PCR)

RNA was extracted by Trizol reagent (Invitrogen, Carlsbad,
CA, USA). First strand cDNA was then synthesized with
Applied Biosystem (Foster City, CA, USA) reverse transcrip-
tion reagent [16, 19]. HO-1 mRNA expression was assessed
by TaqMan Gene Expression, Applied Biosystem and quanti-
fied using a fluorescence-based real-time detection method by
7900HT Fast Real Time PCR System (Life technologies,
Carlsbad, CA, USA). For each sample, the relative expression
l e v e l o f HO-1 (Hs01110250_m1 ) , I r e 1 a l p h a
(Hs00980095_m1), and BIP/ GRP78 (Hs00607129_gH)
mRNA was normalized using GAPDH (Hs02758991_g1) as
an invariant control [20].

Western Blot Analysis

Briefly, for western blot analysis, 30 μg of protein was loaded
onto a 12% polyacrylamide gel MiniPROTEAN® TGX™
(BIO-RAD, Milan, Italy) followed by electrotransfer to nitro-
cellulose membrane TransBlot® Turbo™ (BIO-RAD, Milan,
Italy) using TransBlot® SE Semi-Dry Transfer Cell (BIO-
RAD, Milan, Italy). Subsequently, membrane was blocked
in Odyssey Blocking Buffer (Licor, Milan, Italy) for 1 h at
room temperature. After blocking, membrane was three times
washed in phosphate-buffered saline (PBS) for 5 min and
incubated with primary antibodies against HO-1 (1:1000) (an-
ti-rabbit, Cat. No. BML-HC3001-0025, Enzo Life Sciences,
Milan, Italy), BiP (1:1000) (anti-rabbit, Cat. No. 3177S, Cell
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Signaling Technology, Milan, Italy), Iron Responsive
Element1α (IRE1α) (1:1000) (anti-rabbit, Cat. No. 3294S,
Cell Signaling Technology, Milan, Italy), PDI (1:1000) (anti-
rabbit, Cat. No. 5683S, Cell Signaling Technology, Milan,
Italy), ERO (1:1000), and β-actin (1:1000) (anti-mouse, Cat.
No. 4967S, Cell Signaling Technology, Milan, Italy), over-
night at 4 °C [21]. Next day, membranes were three times
washed in PBS for 5 min and incubated with infrared anti-
mouse IRDye800CW (1:5000) and anti-rabbit IRDye700CW
secondary antibodies (1:5000) in PBS/0.5% Tween-20 for 1 h
at room temperature [22, 23]. All antibodies were diluted in
Odyssey Blocking Buffer. The blots were visualized using
Odyssey Infrared Imaging Scanner (Licor, Milan, Italy) and
protein levels were quantified by densitometric analysis. Data
were normalized to β-actin expression [24, 25].

Immunofluorescence

Cells were grown directly on coverslips before immunofluo-
rescence. After washing with PBS, cells were fixed in 4%
paraformaldehyde (Sigma-Aldrich, Milan, Italy) for 20 min
at room temperature [26, 27]. Subsequently, cells were incu-
bated with primary antibody against HO-1 (anti-rabbit, Cat.
No. BMLHC3001-0025, Enzo Life Sciences, Milan, Italy) at
dilution 1:200 and against β-actin (anti-mouse, Cat. No.
4967S, Cell Signaling Technology, Milan, Italy) at dilution
1:200, overnight at 4 °C. Next day, cells were washed three
times in PBS for 5 min and incubated with secondary antibod-
ies: TRITC (anti-mouse, Cat. No. sc-3796, Santa Cruz
Biotechnology) at dilution 1:200, and FITC (anti-rabbit, Cat.
No. sc-2012, Santa Cruz Biotechnology, Santa Cruz, CA,
USA) at dilution 1:200 for 1 h at room temperature. The slides
were mounted with medium containing DAPI (4′, 6-
diamidino-2phenylindole, Santa Cruz Biotechnology, Santa
Cruz, CA, USA) to visualize nuclei [28]. The fluorescent im-
ages were obtained using a Zeiss Axio Imager Z1Microscope
with Apotome 2 system (Zeiss, Milan, Italy). As a control, the
specificity of immunostaining was verified by omitting incu-
bat ion with the pr imary or secondary ant ibody.
Immunoreactivity was evaluated taking into account the
signal-to-noise ratio of immunofluorescence.

Statistical Analysis

Statistical analyses were made by Prism Software (Graphpad
Software Inc., La Jolla, CA, USA), (Graphpad Prism, data
analysis software, RRID: rid_000081). The data are expressed
as mean ± SEM. Statistical analysis was carried out by
ANOVA test: it is used to compare the means of more than
two samples. The significance of differences between means
was analyzed by analysis of variance. A p value of less than
0.05 (*p < 0.05) was accepted as statistically significant be-
tween experimental and control groups.

Results

ALA Effects in BTZ-Induced Cytotoxicity
in Neuroblastoma Cell Lines

We observed that BTZ 50 nM exhibited cytotoxicity in SH-
SY5Y (p < 0.0001) (Fig. 1).Moreover, we tested the effects of
ALA on SH-SY5Y cell proliferation alone or in combination
with BTZ. Our data also showed that ALA alone had no sig-
nificant effect on cell viability, whereas co-treatment with
BTZ significantly decreased the cytotoxic effect of BTZ
(p < 0.0001) (Fig. 1).

ALA Reduces HO-1 Expression Induced by BTZ
and Increase Its Nuclear Translocation

In order to evaluate cellular oxidative stress response after
BTZ treatment alone or in combination with ALA, we
evaluated HO-1 expression. We observed a significant in-
crease of HO-1 mRNA following treatment with BTZ
50 nM (p < 0.0001) (Fig. 2a). The evaluation of HO-1
protein expression by western blot assay further con-
firmed such effect (Fig. 2b, c). Interestingly, these set of
experiments suggested a possible cleavage of HO-1 pro-
tein (Fig. 2b), which it is known to allow HO-1 translo-
cation into the nuclear compartment where it may exerts
its non-canonical functions (i.e., genetic instability, tran-
scriptional activation of antioxidant genes). In order to
confirm such evidence, we studied the nuclear localization
of HO-1 in neuroblastoma cells by structured Illumination
ZEISS Apotome 2 microscopy. We observed an increase
of protein expression and nuclear localization signal of
HO-1 in neuroblastoma cells after treatment with BTZ

Fig. 1 Determination of cell viability of NB cell lines. ATPLite analysis
for cell viability evaluation of NB cell lines untreated, treated with BTZ
(50 nM) alone, treated with ALA (100 μM) alone and treated with BTZ +
ALA in combination. The data are expressed as mean ± SEM (standard
error of the mean). The significance of differences between means was
analyzed by analysis of variance. (*p < 0.05) (**p < 0.01) (***p < 0.001)
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(Fig. 3) compared with untreated cells. Cytoplasmic local-
ization of HO-1 was disrupted when BTZ and ALA were
used in combination (Fig. 3). Moreover, ALA did not
induce HO-1 expression, but in combination with BTZ,
ALA was able to reverse BTZ-induced HO-1 expression
and promoted its nuclear localization (Fig. 3). In order to
confirm ER-stress-induced HO-1 expression, we per-
formed the real-time PCR of the UPR related genes after
treatment with thapsigargin alone or in combination with
a chemical chaperon 4-PBA. We observed that the
thapsigargin treatment of neuroblastoma cells induced

UPR related genes expressions such as HO-1 and this
effects was reverted by 4-PBA (Fig. 4).

ALA Modulates ER-Stress Signaling

Our data showed that BTZ was able to induce protein expres-
sion of ER-stress markers BiP1, IRE1α, ERO1α, and PDI
(p < 0.0001) compared to control. By contrast, when NB cell
lines were exposed to BTZ in combination with ALA, we
observed a concomitant reduction of ER-stress protein levels
(p < 0.001) in respect to BTZ alone (Fig. 5).

Fig. 2 Evaluation of HO-1 gene
and protein expression on NB cell
lines. a Evaluation of HO-1 gene
expression after treatment with
ALA (100 μM) alone, with BTZ
(50 nM) alone, and with BTZ +
ALA in combination, in NB cell
lines. b Evaluation of HO-1 pro-
tein expression after treatment
with ALA (100 μM) alone, with
BTZ (50 nM) alone, and with
BTZ + ALA in combination, in
NB cell lines. The data are
expressed as mean ± SEM. The
significance of differences be-
tween means was analyzed by
analysis of variance. (*p < 0.05)
(**p < 0.01) (***p < 0.001)

Fig. 3 Microscopy analysis of
HO-1 localization in NB cell
lines. The detection of HO-1 was
performed by incubation with
anti-rabbit secondary antibody
followed by monoclonal antibody
conjugated with TRITC (red).
The counter-staining of the cells
was performed using the nuclear
dye DAPI (blue)
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Discussion

In the present study, we showed the role of ALA on the
development of chemoresistance in NB cells treated with
BTZ. Our data indicate that ALA, in combination with
BTZ, acts as chemical chaperone reducing the stress re-
sponse induced by proteasome inhibition. Firstly, we
showed that BTZ significantly reduces cell viability.
These data are consistent with previous observations
showing that BTZ, a boronic acid dipeptide inhibitor of
the 26S proteasome [12], downregulates the expression of
several antiapoptotic factors as well as it induces caspase-

dependent apoptosis [29, 30]. It is well known that pro-
teasome inhibitors induce ER-stress, resulting in a UPR
and escalation of ROS that leads to cell death. In cancer
cells, HO-1 plays a primary role as essential survival fac-
tor, protecting against chemotherapy-induced increase in
ROS [9, 11, 14]. These observations were confirmed in
the present study. Under our experimental conditions,
HO-1 upregulation was observed following BTZ treat-
ment on all tested NB cell lines, suggesting a protective
role against BTZ-induced ROS. Concomitantly to HO-1
upregulation, we showed a significant induction of ER-
stress. Other papers demonstrated that BTZ enhances

Fig. 4 Gene expression chaperon levels after thapsigargin treatment.
Comparison of gene expression chaperon levels of BIP1, Ire1a, and
HO-1 in neuoblastoma cell lines treated with thapsigargin (10 μM) alone,
and in combination with a chemical chaperon 4-PBA (5 mM). The data

are expressed as mean ± SEM. The significance of differences between
means was analyzed by analysis of variance. (*p < 0.05) (**p < 0.01)
(***p < 0.001)

Fig. 5 Protein expression
chaperon levels of BIP1, Ire1,
Ero1, and PDI in neuoblastoma
cell lines. Comparison of protein
expression of BIP1, Ire1, Ero1,
and PDI in neuoblastoma cell
lines treated with BTZ (50 nM)
alone, with ALA (100 μM) alone,
and in combination with ALA:
BTZ + ALA (100 μM). The data
are expressed as mean ± SEM.
The significance of differences
between means was analyzed by
analysis of variance. (*p < 0.05)
(**p < 0.01) (***p < 0.001)
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ER-stress [31, 32] and that HO-1 upregulation is depen-
dent on ER-stress [7]. In order to demonstrate the impli-
cations of ALA in the mechanism of cell resistance to the
cytotoxic effect induced by BTZ, we co-treated NB cells
with ALA 100 μM. Our data shown an increase of cell
viability in cells treated with both BTZ and ALA. The co-
treatment with BTZ + ALA induced a downregulation of
HO-1 and ER-stress respect to NB cells treated with BTZ
alone. Previous researchers demonstrated that HO-1 is
overexpressed in NB cells BTZ-resistant [33], although
we shown both a significantly downregulation of HO-1
and cell survival induced by ALA. At the same time and
in the same condition, the immunofluorescence assay
showed a nuclear localization of HO-1 compared to NB
cells treated with BTZ alone. The nuclear localization of
HO-1 has been demonstrated in different situations [34,
35] and may serve to upregulate cytoprotective genes
against oxidative stress [36]. In this regard, it has been
previously demonstrated that nuclear HO-1 is capable to
protect leukemic cells from drug-induced toxicity and it
could be also implicated as a regulator of DNA repair
activities [37, 38]. Thus we supposed that ALA induces
cytoprotection in NB cell lines promoting intracellular
HO-1 compartmentalization rather than its enzymatic ac-
tivity. Some researchers [39] showed that nuclear HO-1
modulates the activation of Nrf2 and induces an adaptive
reprogramming that stimulates antioxidant defenses. In
order to confirm the pivotal role of HO-1 as chemical
chaperone and its antioxidant properties, we treated NB
cells with thapsigargin that was able to induce all ER-
stress proteins and HO-1 and this effect was reversed by
addition of 4-PBA. In conclusion, the mechanisms of
cytoprotection of ALA against NB cells treated with
BTZ seem to be complex. Our hypothesis is that antiox-
idant properties of ALA under our experimental condi-
tions are not due to upregulation of HO-1 in response to
stress induction by BTZ rather its nuclear localization.
Recently, some interesting researches [7] demonstrated
that protective effect of HO-1 on drug-induced cytotoxic-
ity in leukemic and myeloma cells does not involve its
enzymatic by-products, but rather its nuclear translocation
following proteolytic cleavage. Furthermore, they showed
that HO-1 upregulation is dependent on ER-stress sug-
gesting a link between oxidative stress and UPR.
Whether nuclear HO-1 can regulate the transcription of
genes implicated in drug resistance wait for further inves-
tigations. All these data demonstrated that ALA protects NB
cells by stress and damage induced by BTZ since it reduces
ER-stress and activates autophagy as mechanism of cell sur-
vival. This work confirms the neuroprotective effects of ALA
in neurological field and suggests that it should not use in
treatment of neuroblastoma disease, since reduces both redox
escalation and cellular damage induced by BTZ.
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