Tissue defects caused by diseases or trauma present enormous challenges in regenerative medicine. Recently, a better understanding of the biological processes underlying tissue repair led to the establishment of new approaches in tissue engineering which comprise the combination of biodegradable scaffolds and appropriate cells together with specific environmental cues, such as growth or adhesive factors. These factors (in fact proteins) have to be loaded and sustainably released from the scaffolds in time. This review provides an overview of the various hydrogel technologies that have been proposed to control the release of bioactive molecules of interest for tissue engineering applications. In particular, after a brief introduction on bioactive protein drugs that have remarkable relevance for tissue engineering, this review will discuss their release mechanisms from hydrogels, their encapsulation and immobilization methods and will overview the main classes of hydrogel forming biomaterials used in vitro and in vivo to release them. Finally, an outlook on future directions and a glimpse into the current clinical developments are provided.

Hydrogels for protein delivery in tissue engineering

CENSI, Roberta;DI MARTINO, Piera;
2012-01-01

Abstract

Tissue defects caused by diseases or trauma present enormous challenges in regenerative medicine. Recently, a better understanding of the biological processes underlying tissue repair led to the establishment of new approaches in tissue engineering which comprise the combination of biodegradable scaffolds and appropriate cells together with specific environmental cues, such as growth or adhesive factors. These factors (in fact proteins) have to be loaded and sustainably released from the scaffolds in time. This review provides an overview of the various hydrogel technologies that have been proposed to control the release of bioactive molecules of interest for tissue engineering applications. In particular, after a brief introduction on bioactive protein drugs that have remarkable relevance for tissue engineering, this review will discuss their release mechanisms from hydrogels, their encapsulation and immobilization methods and will overview the main classes of hydrogel forming biomaterials used in vitro and in vivo to release them. Finally, an outlook on future directions and a glimpse into the current clinical developments are provided.
2012
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/389425
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 301
  • ???jsp.display-item.citation.isi??? 290
social impact