An advanced lithium ion battery using nanostructured tinecarbon lithium alloying anode and a high voltage LiNi0.5Mn1.5O4 spinel-type cathode is studied, with particular focus to the low temperature range. The stable behavior of the battery is assured by the use of an electrolyte media based on a LiPF6 salt dissolved in EC-DEC-DMC, i.e. a mixture particularly suitable for the low temperature application. Cycling tests, both in half cells and in full lithium ion battery using the SneC anode and the LiNi0.5Mn1.5O4 cathode, performed in a temperature range extending from room temperature to "30 C, indicate that the electrode/electrolyte configuration here adopted may be suitable for effective application in the lithium ion battery field. The full cell, cycled at -5 °C, shows stable capacity of about 105 mAh g-1 over more than 200 chargee-discharge cycles that is considered a relevant performance considering the low temperature region.
Nanostructured tin-carbon/ LiNi0.5Mn1.5O4 lithium-ion battery operating at low temperature
NOBILI, Francesco;TOSSICI, Roberto;MARASSI, Roberto;
2014-01-01
Abstract
An advanced lithium ion battery using nanostructured tinecarbon lithium alloying anode and a high voltage LiNi0.5Mn1.5O4 spinel-type cathode is studied, with particular focus to the low temperature range. The stable behavior of the battery is assured by the use of an electrolyte media based on a LiPF6 salt dissolved in EC-DEC-DMC, i.e. a mixture particularly suitable for the low temperature application. Cycling tests, both in half cells and in full lithium ion battery using the SneC anode and the LiNi0.5Mn1.5O4 cathode, performed in a temperature range extending from room temperature to "30 C, indicate that the electrode/electrolyte configuration here adopted may be suitable for effective application in the lithium ion battery field. The full cell, cycled at -5 °C, shows stable capacity of about 105 mAh g-1 over more than 200 chargee-discharge cycles that is considered a relevant performance considering the low temperature region.File | Dimensione | Formato | |
---|---|---|---|
POWER_20064 pre-print.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
1.87 MB
Formato
Adobe PDF
|
1.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.