Free base, Cu(II) and Zn(II) complexes of the 2,7,12,17-tetrapropionic acid of 3,8,13,18-tetramethyl-21H,23H porphyrin (CPI) in solution and bounded to transparent monolayer TiO2 nanoparticle films were studied to determine their adsorption on TiO2 surface, to measure the adsorption kinetics and isotherms, and to use the results obtained to optimize the preparation of DSSC photovoltaic cells. Adsorption studies were carried out on monolayer transparent TiO2 films of a known thickness. Langmuir and Frendlich adsorption constants of CPI-dyes on TiO2 monolayer surface have been calculated as a function of the equilibrium concentrations in the solutions.The amount of these adsorbed dyes showed the accordance with Langmuir isotherm. Kinetic data on the adsorption of dyes showed significantly better fits to pseudo-first-order model and the evaluated rate constants linearly increased with the grow of initial dye concentrations.The stoichiometry of the adsorption of CPI-dyes into TiO2 and the influence of presence of coadsorbent (chenodeoxycholic acid) have been established. The DSSC obtained in the similar conditions showed that the best efficiency can be obtained in the absence of coadsorbent with short and established immersion times.
Equilibrium and kinetic aspects in the sensitization of monolayer transparent TiO2 thin films with porphyrin dyes for DSSC applications
GIOVANNETTI, Rita;ZANNOTTI, MARCO;ALIBABAEI, Leila;FERRARO, Stefano
2014-01-01
Abstract
Free base, Cu(II) and Zn(II) complexes of the 2,7,12,17-tetrapropionic acid of 3,8,13,18-tetramethyl-21H,23H porphyrin (CPI) in solution and bounded to transparent monolayer TiO2 nanoparticle films were studied to determine their adsorption on TiO2 surface, to measure the adsorption kinetics and isotherms, and to use the results obtained to optimize the preparation of DSSC photovoltaic cells. Adsorption studies were carried out on monolayer transparent TiO2 films of a known thickness. Langmuir and Frendlich adsorption constants of CPI-dyes on TiO2 monolayer surface have been calculated as a function of the equilibrium concentrations in the solutions.The amount of these adsorbed dyes showed the accordance with Langmuir isotherm. Kinetic data on the adsorption of dyes showed significantly better fits to pseudo-first-order model and the evaluated rate constants linearly increased with the grow of initial dye concentrations.The stoichiometry of the adsorption of CPI-dyes into TiO2 and the influence of presence of coadsorbent (chenodeoxycholic acid) have been established. The DSSC obtained in the similar conditions showed that the best efficiency can be obtained in the absence of coadsorbent with short and established immersion times.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.