We investigate a Maxwell model of inelastic granular mixture under the influence of a stochastic driving and obtain its steady-state properties in the context of classical kinetic theory. The model is studied analytically by computing the moments up to the eighth order and approximating the distributions by means of a Sonine polynomial expansion method. The main findings concern the existence of two different granular temperatures, one for each species, and the characterization of the distribution functions, whose tails are in general more populated than those of an elastic system. These analytical results are tested against Monte Carlo numerical simulations of the model and are in general in good agreement. The simulations, however, reveal the presence of pronounced non-Gaussian tails in the case of an infinite temperature bath, which are not well reproduced by the Sonine method.
Steady state properties of a mean field model of driven inelastic mixtures
MARINI BETTOLO MARCONI, Umberto;
2002-01-01
Abstract
We investigate a Maxwell model of inelastic granular mixture under the influence of a stochastic driving and obtain its steady-state properties in the context of classical kinetic theory. The model is studied analytically by computing the moments up to the eighth order and approximating the distributions by means of a Sonine polynomial expansion method. The main findings concern the existence of two different granular temperatures, one for each species, and the characterization of the distribution functions, whose tails are in general more populated than those of an elastic system. These analytical results are tested against Monte Carlo numerical simulations of the model and are in general in good agreement. The simulations, however, reveal the presence of pronounced non-Gaussian tails in the case of an infinite temperature bath, which are not well reproduced by the Sonine method.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.