We study omega-categorical weakly o-minimal expansions of Boolean lattices. We show that a structure (A, <, I) expanding a Boolean lattice (A, <) by a finite sequence J of ideals of A closed under the usual Heyting algebra operations is weakly o-minimal if and only if it is omega-categorical, and hence if and only if A/I has only finitely many atoms for every I in J. We propose other related examples of weakly o-minimal omega-categorical models in this framework, and we examine the internal structure of these models.

Omega-categorical weakly o-minimal expansions of Boolean lattices

TOFFALORI, Carlo;LEONESI S.
2003-01-01

Abstract

We study omega-categorical weakly o-minimal expansions of Boolean lattices. We show that a structure (A, <, I) expanding a Boolean lattice (A, <) by a finite sequence J of ideals of A closed under the usual Heyting algebra operations is weakly o-minimal if and only if it is omega-categorical, and hence if and only if A/I has only finitely many atoms for every I in J. We propose other related examples of weakly o-minimal omega-categorical models in this framework, and we examine the internal structure of these models.
2003
262
File in questo prodotto:
File Dimensione Formato  
MLQ 2003.pdf

solo gestori di archivio

Tipologia: Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 348.94 kB
Formato Adobe PDF
348.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/6701
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact