We study omega-categorical weakly o-minimal expansions of Boolean lattices. We show that a structure (A, <, I) expanding a Boolean lattice (A, <) by a finite sequence J of ideals of A closed under the usual Heyting algebra operations is weakly o-minimal if and only if it is omega-categorical, and hence if and only if A/I has only finitely many atoms for every I in J. We propose other related examples of weakly o-minimal omega-categorical models in this framework, and we examine the internal structure of these models.
Omega-categorical weakly o-minimal expansions of Boolean lattices
TOFFALORI, Carlo;LEONESI S.
2003-01-01
Abstract
We study omega-categorical weakly o-minimal expansions of Boolean lattices. We show that a structure (A, <, I) expanding a Boolean lattice (A, <) by a finite sequence J of ideals of A closed under the usual Heyting algebra operations is weakly o-minimal if and only if it is omega-categorical, and hence if and only if A/I has only finitely many atoms for every I in J. We propose other related examples of weakly o-minimal omega-categorical models in this framework, and we examine the internal structure of these models.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
MLQ 2003.pdf
solo gestori di archivio
Tipologia:
Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
348.94 kB
Formato
Adobe PDF
|
348.94 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.