Radioligand binding assay techniques associated with light microscope autoradiography were used for investigating the pharmacological profile and the micro anatomical localization of peripheral dopamine receptor subtypes. In systemic arteries, the predominant dopamine D1-like receptor belongs to the D5 (or D1B) subtype. It is located within smooth muscle of the tunica media. In pulmonary arteries, dopamine D1-like receptors have primarily an endothelial localization and belong to the dopamine D1 (or D1A) receptor subtype. Both systemic and pulmonary arteries express a dopamine D2-like receptor belonging to the D2 receptor subtype. It has a prejunctional localization in the majority of vascular beds investigated. In cerebral, coronary and mesenteric arteries, it has also an endothelial localization. In the heart, a dopamine D4 receptor was identified. It is expressed by atrial tissue and has a widespread distribution overall atrial musculature. The kidney expresses both dopamine D1-like and D2-like receptors. Renal dopamine D1-like receptors have a vascular and tubular localization. The majority of these sites belongs to the D5 receptor subtype. A smaller D1 receptor population has primarily a tubular localization. Renal dopamine D2-like receptors belong to the dopamine D3 subtype and in lesser amounts to the D2 and D4 receptor subtypes. Renal dopamine D3 receptor has to a greater extent a tubular localization, whereas the D4 receptor is located within glomerular arterioles. The above results suggest that radioligand binding assay and autoradiographic techniques, if performed in the presence of compounds displaying specific receptor subtype selectivity, may contribute to characterize, mainly from a quantitative point of view, peripheral dopamine receptors.

Light microscope autoradiography of peripheral dopamine receptor subtype.

AMENTA, Francesco
1997-01-01

Abstract

Radioligand binding assay techniques associated with light microscope autoradiography were used for investigating the pharmacological profile and the micro anatomical localization of peripheral dopamine receptor subtypes. In systemic arteries, the predominant dopamine D1-like receptor belongs to the D5 (or D1B) subtype. It is located within smooth muscle of the tunica media. In pulmonary arteries, dopamine D1-like receptors have primarily an endothelial localization and belong to the dopamine D1 (or D1A) receptor subtype. Both systemic and pulmonary arteries express a dopamine D2-like receptor belonging to the D2 receptor subtype. It has a prejunctional localization in the majority of vascular beds investigated. In cerebral, coronary and mesenteric arteries, it has also an endothelial localization. In the heart, a dopamine D4 receptor was identified. It is expressed by atrial tissue and has a widespread distribution overall atrial musculature. The kidney expresses both dopamine D1-like and D2-like receptors. Renal dopamine D1-like receptors have a vascular and tubular localization. The majority of these sites belongs to the D5 receptor subtype. A smaller D1 receptor population has primarily a tubular localization. Renal dopamine D2-like receptors belong to the dopamine D3 subtype and in lesser amounts to the D2 and D4 receptor subtypes. Renal dopamine D3 receptor has to a greater extent a tubular localization, whereas the D4 receptor is located within glomerular arterioles. The above results suggest that radioligand binding assay and autoradiographic techniques, if performed in the presence of compounds displaying specific receptor subtype selectivity, may contribute to characterize, mainly from a quantitative point of view, peripheral dopamine receptors.
1997
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/5830
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact