This study explores the transverse response of bridge piers in riverbeds under a multi-hazard scenario, involving seismic actions and scoured foundations. The combined impact of scour on foundations’ stability and on the dynamic stiffness of soil–foundation systems makes bridges more susceptible to earthquake damage. While previous research has extensively investigated this issue for bridges founded on piles, this work addresses the less explored but critical scenario of bridges on shallow foundations, typical of existing bridges. A comprehensive soil–foundation structure model is developed to be representative of the transverse response of multi-span and continuous girder bridges, and the effects of different scour scenarios and foundation embedment on the dynamic stiffness of the soil–foundation sub-systems are investigated through refined finite element models. Then, a parametric investigation is conducted to assess the effects of scour on the dynamic properties of the systems and, for some representative bridge prototypes, the seismic response at scoured and non-scoured conditions are compared considering real earthquakes. The research results demonstrate the significance of scour effects on the dynamic properties of the soil–foundation structure system and on the displacement demand of the bridge decks.

Dynamic Behaviour and Seismic Response of Scoured Bridge Piers

Dezi F.
2025-01-01

Abstract

This study explores the transverse response of bridge piers in riverbeds under a multi-hazard scenario, involving seismic actions and scoured foundations. The combined impact of scour on foundations’ stability and on the dynamic stiffness of soil–foundation systems makes bridges more susceptible to earthquake damage. While previous research has extensively investigated this issue for bridges founded on piles, this work addresses the less explored but critical scenario of bridges on shallow foundations, typical of existing bridges. A comprehensive soil–foundation structure model is developed to be representative of the transverse response of multi-span and continuous girder bridges, and the effects of different scour scenarios and foundation embedment on the dynamic stiffness of the soil–foundation sub-systems are investigated through refined finite element models. Then, a parametric investigation is conducted to assess the effects of scour on the dynamic properties of the systems and, for some representative bridge prototypes, the seismic response at scoured and non-scoured conditions are compared considering real earthquakes. The research results demonstrate the significance of scour effects on the dynamic properties of the soil–foundation structure system and on the displacement demand of the bridge decks.
2025
bridge piers
scour effects
seismic response
shallow foundations
soil–foundation interaction
soil–structure interaction
262
File in questo prodotto:
File Dimensione Formato  
IJ38+-+2025+-+I+-+Antonopoulos+et+al.+-+Dynamic+Behaviour+and+Seismic+Response+of+Scoured+Bridge+Piers(pdfgear.com).pdf

accesso aperto

Tipologia: Versione Editoriale
Licenza: Creative commons
Dimensione 5.19 MB
Formato Adobe PDF
5.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/495474
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact