This paper presents the results of lateral impact load field tests conducted on a near-shore steel pipe pile vibro-driven into soft marine clay. Two series of tests are carried out, the first 1 week and the second 10 weeks after the vibro-driving. The pile is instrumented with an unconventional technique for field tests in marine environment which includes an accelerometer at the pile head, strain gauges and pore pressure transducers along the pile. Instruments are properly protected from marine environment and pile driving installation method. Tests are aimed at investigating the dynamic soil-water-pile interaction and determining the dynamic characteristics of the whole system at very small strain. The obtained results show the complex dynamic behaviour of the vibrating soil-water-pile system in terms of natural frequencies, damping and mode shapes. The variation in the dynamic behaviour in time, due to reconsolidation of soil subsequent to vibro-driving is also discussed. Furthermore, the horizontal dynamic impedance function of the whole system is derived from the experimental data over a wide frequency range and compared with that obtained from a numerical soil-pile interaction model. © 2012 Elsevier Ltd.

Dynamic response of a near-shore pile to lateral impact load

Dezi F.;
2012-01-01

Abstract

This paper presents the results of lateral impact load field tests conducted on a near-shore steel pipe pile vibro-driven into soft marine clay. Two series of tests are carried out, the first 1 week and the second 10 weeks after the vibro-driving. The pile is instrumented with an unconventional technique for field tests in marine environment which includes an accelerometer at the pile head, strain gauges and pore pressure transducers along the pile. Instruments are properly protected from marine environment and pile driving installation method. Tests are aimed at investigating the dynamic soil-water-pile interaction and determining the dynamic characteristics of the whole system at very small strain. The obtained results show the complex dynamic behaviour of the vibrating soil-water-pile system in terms of natural frequencies, damping and mode shapes. The variation in the dynamic behaviour in time, due to reconsolidation of soil subsequent to vibro-driving is also discussed. Furthermore, the horizontal dynamic impedance function of the whole system is derived from the experimental data over a wide frequency range and compared with that obtained from a numerical soil-pile interaction model. © 2012 Elsevier Ltd.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/495473
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 39
social impact