Process mining is a prominent discipline in business process management. It collects a variety of techniques for gathering information from event logs, each fulfilling a different mining purpose. Event logs are always necessary for assessing and validating mining techniques in relation to specific purposes. Unfortunately, event logs are hard to find and usually contain noise that can influence the validity of the results of a mining technique. In this paper, we propose a framework, named purple, for generating, through business model simulation, event logs tailored for different mining purposes, i.e., discovery, what-if analysis, and conformance checking. It supports the simulation of models specified in different languages, by projecting their execution onto a common behavioral model, i.e., a labeled transition system. We present eleven instantiations of the framework implemented in a software tool by-product of this paper. The framework is validated against reference log generators through experiments on the purposes presented in the paper.

A framework for purpose-guided event logs generation

Re Barbara;Rossi Lorenzo
;
Tiezzi Francesco
2025-01-01

Abstract

Process mining is a prominent discipline in business process management. It collects a variety of techniques for gathering information from event logs, each fulfilling a different mining purpose. Event logs are always necessary for assessing and validating mining techniques in relation to specific purposes. Unfortunately, event logs are hard to find and usually contain noise that can influence the validity of the results of a mining technique. In this paper, we propose a framework, named purple, for generating, through business model simulation, event logs tailored for different mining purposes, i.e., discovery, what-if analysis, and conformance checking. It supports the simulation of models specified in different languages, by projecting their execution onto a common behavioral model, i.e., a labeled transition system. We present eleven instantiations of the framework implemented in a software tool by-product of this paper. The framework is validated against reference log generators through experiments on the purposes presented in the paper.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/495385
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact