Combinatorial cancer therapy benefits from injectable hydrogels for localized, controlled drug delivery. This study presents a thiol-ene conjugated hydrogel formed by cross-linking thiol-modified hyaluronic acid (HASH) with vinyl sulfone-modified beta-cyclodextrin (CDVS). Four formulations (23Gel-16, 23Gel-33, 99Gel-16, 99Gel-33) were synthesized by varying HASH molecular weight (23 or 99 kDa) and CDVS modification (16% or 33%). Rheological analysis confirmed enhanced viscoelasticity with increasing molecular weight and modification (99Gel-33 > 99Gel-16 > 23Gel-33 > 23Gel-16). The system enabled combinatorial delivery of doxorubicin (DOX) and carvacrol (CRV), exhibiting tumor-responsive degradation and tunable release. DOX release accelerated under tumor-mimicking conditions (100% in 46 h vs 58.7% in PBS), while CRV showed an initial burst followed by sustained release. The hydrogel promoted mesenchymal stem cell proliferation and effectively inhibited triple-negative breast cancer cells. This injectable, tumor-responsive hydrogel system offers a promising platform for minimally invasive, personalized cancer therapy.

Localized Cancer Treatment Using Thiol-Ene Hydrogels for Dual Drug Delivery

Sathi Devi, Lakshmi;Gabrielli, Serena;Agas, Dimitrios;Sabbieti, Maria Giovanna;Morelli, Maria Beatrice;Amantini, Consuelo;Casadidio, Cristina
;
Censi, Roberta
2025-01-01

Abstract

Combinatorial cancer therapy benefits from injectable hydrogels for localized, controlled drug delivery. This study presents a thiol-ene conjugated hydrogel formed by cross-linking thiol-modified hyaluronic acid (HASH) with vinyl sulfone-modified beta-cyclodextrin (CDVS). Four formulations (23Gel-16, 23Gel-33, 99Gel-16, 99Gel-33) were synthesized by varying HASH molecular weight (23 or 99 kDa) and CDVS modification (16% or 33%). Rheological analysis confirmed enhanced viscoelasticity with increasing molecular weight and modification (99Gel-33 > 99Gel-16 > 23Gel-33 > 23Gel-16). The system enabled combinatorial delivery of doxorubicin (DOX) and carvacrol (CRV), exhibiting tumor-responsive degradation and tunable release. DOX release accelerated under tumor-mimicking conditions (100% in 46 h vs 58.7% in PBS), while CRV showed an initial burst followed by sustained release. The hydrogel promoted mesenchymal stem cell proliferation and effectively inhibited triple-negative breast cancer cells. This injectable, tumor-responsive hydrogel system offers a promising platform for minimally invasive, personalized cancer therapy.
2025
262
File in questo prodotto:
File Dimensione Formato  
2025 Localized Cancer Treatment Using Thiol Ene Hydrogels for Dual Drug Delivery.pdf

accesso aperto

Tipologia: Versione Editoriale
Licenza: Creative commons
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/492628
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact