Let V be a countably infinite-dimensional vector space over a finite field F. Then V is ω-categorical, and so are the projective space PG(V) and the projective symplectic, unitary and orthogonal spaces on V. Using a reconstruction method developed by Rubin, we prove the following result: let M. be one of the above spaces, and let M be an ω-categorical structure such that Aut(M) ≊Aut(N) as abstract groups. Then M. and N are bi-interpretable. We also give a reconstruction result for the affine group AGL(V) acting on V by proving that V as an affine space is interpretable in AGL(V). © 2007 London Mathematical Society.

Reconstruction of classical geometries from their automorphism group

Barbina, S.
2007-01-01

Abstract

Let V be a countably infinite-dimensional vector space over a finite field F. Then V is ω-categorical, and so are the projective space PG(V) and the projective symplectic, unitary and orthogonal spaces on V. Using a reconstruction method developed by Rubin, we prove the following result: let M. be one of the above spaces, and let M be an ω-categorical structure such that Aut(M) ≊Aut(N) as abstract groups. Then M. and N are bi-interpretable. We also give a reconstruction result for the affine group AGL(V) acting on V by proving that V as an affine space is interpretable in AGL(V). © 2007 London Mathematical Society.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/490927
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 3
social impact