Several authors have studied the probability that randomly chosen elements of a finite group generate a nilpotent subgroup. In the present article, we consider the probability that $n + 1$ randomly chosen elements of a finite group generate a nilpotent subgroup of class at most $c$, where $n$ and $c$ are positive integers. We show also a result of invariance for two finite $c$-isoclinic groups in the sense of Hekster. Our proofs areccharacter–free and follow some classical methods in literature.

Some restrictions on the probability of generating nilpotent subgroups

Russo F
;
2013-01-01

Abstract

Several authors have studied the probability that randomly chosen elements of a finite group generate a nilpotent subgroup. In the present article, we consider the probability that $n + 1$ randomly chosen elements of a finite group generate a nilpotent subgroup of class at most $c$, where $n$ and $c$ are positive integers. We show also a result of invariance for two finite $c$-isoclinic groups in the sense of Hekster. Our proofs areccharacter–free and follow some classical methods in literature.
2013
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/490067
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact