The exterior degree $d^\wedge(G)$ of a finite group $G$ has been recently introduced by Rezaei and Niroomand in order to study the probability that two given elements $x$ and $y$ of $G$ commute in the nonabelian exterior square $G \wedge G$. This notion is related with the probability $d(G)$ that two elements of $G$ commute in the usual sense. Motivated by a paper of Erovenko and Sury of 2008, we compute the exterior degree of a group which is the wreath product of two finite abelian $p$--groups ($p$ prime). We find some numerical inequalities and study mostly abelian $p$-groups.

On the exterior degree of the wreath product of finite abelian groups

RUSSO, Francesco
Primo
;
2014-01-01

Abstract

The exterior degree $d^\wedge(G)$ of a finite group $G$ has been recently introduced by Rezaei and Niroomand in order to study the probability that two given elements $x$ and $y$ of $G$ commute in the nonabelian exterior square $G \wedge G$. This notion is related with the probability $d(G)$ that two elements of $G$ commute in the usual sense. Motivated by a paper of Erovenko and Sury of 2008, we compute the exterior degree of a group which is the wreath product of two finite abelian $p$--groups ($p$ prime). We find some numerical inequalities and study mostly abelian $p$-groups.
2014
Exterior degree
$p$-groups
nonabelian exterior square
Schur multiplier
homology
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/490063
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact