A subgroup $H$ of a group $G$ is called almost normal in $G$ if it has finitely many conjugates in $G$. A classic result of B. H. Neumann informs us that $|G : Z(G)|$ is finite if and only if each $H$ is almost normal in $G$. Starting from this result, we investigate the structure of a group in which each non- finitely generated subgroup satisfies a property, which is weaker to be almost normal.

A generalization of groups with many almost normal subgroups

RUSSO, Francesco
Primo
2010-01-01

Abstract

A subgroup $H$ of a group $G$ is called almost normal in $G$ if it has finitely many conjugates in $G$. A classic result of B. H. Neumann informs us that $|G : Z(G)|$ is finite if and only if each $H$ is almost normal in $G$. Starting from this result, we investigate the structure of a group in which each non- finitely generated subgroup satisfies a property, which is weaker to be almost normal.
2010
Dietzmann classes
anti-$\mathfrak{X}C$-groups
groups with $\mathfrak{X}$-classes of conjugate subgroups
Chernikov groups
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/490041
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact