We have recently shown that a nilpotent Lie algebra \(L\) of dimension \(n \geq 1\) satisfies the inequality \(\dim H_2(L,\mathbb{Z}) \leq \frac{1}{2}(n+m-2)(n-m-1)+1\), where \(\dim L^2=m \geq 1\) and \(H_2(L,\mathbb{Z})\) is the 2-nd integral homology Lie algebra of \(L\). Our first main result correlates this bound with the \(i\)-th Betti number \(\dim H^i(L,\mathbb{C}^\times)\) of \(L\), where \(H^i(L,\mathbb{C}^\times)\) denotes the \(i\)-th complex cohomology Lie algebra of \(L\). Our second main result describes a more general restriction, which follows an idea of Ellis in [G. Ellis, Appl. Categ. Struct. 6, No. 3, 355–371].

Some restrictions on the Betti numbers of a nilpotent Lie algebra

Russo F
Primo
2014-01-01

Abstract

We have recently shown that a nilpotent Lie algebra \(L\) of dimension \(n \geq 1\) satisfies the inequality \(\dim H_2(L,\mathbb{Z}) \leq \frac{1}{2}(n+m-2)(n-m-1)+1\), where \(\dim L^2=m \geq 1\) and \(H_2(L,\mathbb{Z})\) is the 2-nd integral homology Lie algebra of \(L\). Our first main result correlates this bound with the \(i\)-th Betti number \(\dim H^i(L,\mathbb{C}^\times)\) of \(L\), where \(H^i(L,\mathbb{C}^\times)\) denotes the \(i\)-th complex cohomology Lie algebra of \(L\). Our second main result describes a more general restriction, which follows an idea of Ellis in [G. Ellis, Appl. Categ. Struct. 6, No. 3, 355–371].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/490035
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact