We study the number of elements $x$ and $y$ of a finite group $G$ such that $x \otimes y= 1_{_{G \otimes G}}$ in the nonabelian tensor square $G \otimes G$ of $G$. This number, divided by $|G|^2$, is called the tensor degree of $G$ and has connection with the exterior degree, introduced few years ago in [P. Niroomand and R. Rezaei, On the exterior degree of finite groups, Comm. Algebra 39 (2011), 335--343]. The analysis of upper and lower bounds of the tensor degree allows us to find interesting structural restrictions for the whole group.

On the tensor degree of finite groups

RUSSO, Francesco
2017-01-01

Abstract

We study the number of elements $x$ and $y$ of a finite group $G$ such that $x \otimes y= 1_{_{G \otimes G}}$ in the nonabelian tensor square $G \otimes G$ of $G$. This number, divided by $|G|^2$, is called the tensor degree of $G$ and has connection with the exterior degree, introduced few years ago in [P. Niroomand and R. Rezaei, On the exterior degree of finite groups, Comm. Algebra 39 (2011), 335--343]. The analysis of upper and lower bounds of the tensor degree allows us to find interesting structural restrictions for the whole group.
2017
Nonabelian tensor square
algebraic topology
$p$-goups
probability of commuting pairs
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/490034
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact