Let $G$ be a finite group and $L_e(G)=\{x \in G \mid x^e=1\}$, where $e$ is a positive integer dividing $|G|$. How do bounds on $|L_e(G)|$ influence the structure of $G$ ? Meng and Shi [Arch. Math. (Basel) 96 (2011), 109--114] have answered this question for $|L_e(G)| \le 2e$. We generalize their contributions, considering the inequality $|Le(G)| \le e^2$ and finding a new class of groups of whose we study the structural properties.

Groups described by element numbers

Russo F
2015-01-01

Abstract

Let $G$ be a finite group and $L_e(G)=\{x \in G \mid x^e=1\}$, where $e$ is a positive integer dividing $|G|$. How do bounds on $|L_e(G)|$ influence the structure of $G$ ? Meng and Shi [Arch. Math. (Basel) 96 (2011), 109--114] have answered this question for $|L_e(G)| \le 2e$. We generalize their contributions, considering the inequality $|Le(G)| \le e^2$ and finding a new class of groups of whose we study the structural properties.
2015
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/489985
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact