Let $k$ be a divisor of a finite group $G$ and $L_k(G)=\{x \in G \mid x^k=1\}$. Frobenius proved that the number $|L_k(G)|$ is always divisible by $k$. The following inverse problem is considered: for a given integer $n$, find all groups $G$ such that $\max \{k^{−1} |L_k(G)| \mid k \in \mathrm{Div}(G) \}=n$, where $\mathrm{Div}(G)$ denotes the set of all divisors of $|G|$. A procedure beginning with (in a sense) minimal members and deducing the remaining ones is outlined and executed for $n=8$.

Classification of finite groups via their breadth

Russo F
Primo
2020-01-01

Abstract

Let $k$ be a divisor of a finite group $G$ and $L_k(G)=\{x \in G \mid x^k=1\}$. Frobenius proved that the number $|L_k(G)|$ is always divisible by $k$. The following inverse problem is considered: for a given integer $n$, find all groups $G$ such that $\max \{k^{−1} |L_k(G)| \mid k \in \mathrm{Div}(G) \}=n$, where $\mathrm{Div}(G)$ denotes the set of all divisors of $|G|$. A procedure beginning with (in a sense) minimal members and deducing the remaining ones is outlined and executed for $n=8$.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/489844
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact