Cancer is a multifaceted disease arising from numerous genomic aberrations that have been identified as a result of advancements in sequencing technologies. While next-generation sequencing (NGS), which uses short reads, has transformed cancer research and diagnostics, it is limited by read length. Third-generation sequencing (TGS), led by the Pacific Biosciences and Oxford Nanopore Technologies platforms, employs long-read sequences, which have marked a paradigm shift in cancer research. Cancer genomes often harbour complex events, and TGS, with its ability to span large genomic regions, has facilitated their characterisation, providing a better understanding of how complex rearrangements affect cancer initiation and progression. TGS has also characterised the entire transcriptome of various cancers, revealing cancer-associated isoforms that could serve as biomarkers or therapeutic targets. Furthermore, TGS has advanced cancer research by improving genome assemblies, detecting complex variants, and providing a more complete picture of transcriptomes and epigenomes. This review focuses on TGS and its growing role in cancer research. We investigate its advantages and limitations, providing a rigorous scientific analysis of its use in detecting previously hidden aberrations missed by NGS. This promising technology holds immense potential for both research and clinical applications, with far-reaching implications for cancer diagnosis and treatment.
The Application of Long-Read Sequencing to Cancer
Ermini, L.
Primo
;
2024-01-01
Abstract
Cancer is a multifaceted disease arising from numerous genomic aberrations that have been identified as a result of advancements in sequencing technologies. While next-generation sequencing (NGS), which uses short reads, has transformed cancer research and diagnostics, it is limited by read length. Third-generation sequencing (TGS), led by the Pacific Biosciences and Oxford Nanopore Technologies platforms, employs long-read sequences, which have marked a paradigm shift in cancer research. Cancer genomes often harbour complex events, and TGS, with its ability to span large genomic regions, has facilitated their characterisation, providing a better understanding of how complex rearrangements affect cancer initiation and progression. TGS has also characterised the entire transcriptome of various cancers, revealing cancer-associated isoforms that could serve as biomarkers or therapeutic targets. Furthermore, TGS has advanced cancer research by improving genome assemblies, detecting complex variants, and providing a more complete picture of transcriptomes and epigenomes. This review focuses on TGS and its growing role in cancer research. We investigate its advantages and limitations, providing a rigorous scientific analysis of its use in detecting previously hidden aberrations missed by NGS. This promising technology holds immense potential for both research and clinical applications, with far-reaching implications for cancer diagnosis and treatment.File | Dimensione | Formato | |
---|---|---|---|
cancers-16-01275-v2.pdf
accesso aperto
Tipologia:
Versione Editoriale
Licenza:
PUBBLICO - Creative Commons
Dimensione
1.4 MB
Formato
Adobe PDF
|
1.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.