A finite group $G$, in which two randomly chosen subgroups $H$ and $K$ commute, has been classified by Iwasawa in 1941. It is possible to define a probabilistic notion, which “measures the distance” of $G$ from the groups of Iwasawa. Here we introduce the generalized subgroup commutativity degree $gsd(G)$ for two arbitrary sublattices $\mathrm{S}(G)$ and $\mathrm{T}(G)$ of the lattice of subgroups $\mathrm{L}(G)$ of $G$. Upper and lower bounds for $gsd(G)$ are shown and we study the behaviour of $gsd(G)$ with respect to subgroups and quotients, showing new numerical restrictions.

The probability of commuting subgroups in arbitrary lattices of subgroups

Russo F
Primo
2021-01-01

Abstract

A finite group $G$, in which two randomly chosen subgroups $H$ and $K$ commute, has been classified by Iwasawa in 1941. It is possible to define a probabilistic notion, which “measures the distance” of $G$ from the groups of Iwasawa. Here we introduce the generalized subgroup commutativity degree $gsd(G)$ for two arbitrary sublattices $\mathrm{S}(G)$ and $\mathrm{T}(G)$ of the lattice of subgroups $\mathrm{L}(G)$ of $G$. Upper and lower bounds for $gsd(G)$ are shown and we study the behaviour of $gsd(G)$ with respect to subgroups and quotients, showing new numerical restrictions.
2021
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/488687
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact