In the present paper we show that it is possible to obtain the well known Pauli group $P = \langle X,Y,Z \mid X^2 = Y^2 = Z^2 = 1, {(Y Z)}^4 = {(ZX)}^4 = {(XY )}^4 = 1\rangle$ of order 16 as an appropriate quotient group of two distinct spaces of orbits of the three dimensional sphere $S^3$. The first of these spaces of orbits is realized via an action of the quaternion group $Q_8$ on $S^3$; the second one via an action of the cyclic group of order four on $S^3$. We deduce a result of decomposition of $P$ of topological nature and then we find, in connection with the theory of pseudo-fermions, a possible physical interpretation of this decomposition.

Topological decompositions of the Pauli group and their influence on dynamical systems

Russo F
2021-01-01

Abstract

In the present paper we show that it is possible to obtain the well known Pauli group $P = \langle X,Y,Z \mid X^2 = Y^2 = Z^2 = 1, {(Y Z)}^4 = {(ZX)}^4 = {(XY )}^4 = 1\rangle$ of order 16 as an appropriate quotient group of two distinct spaces of orbits of the three dimensional sphere $S^3$. The first of these spaces of orbits is realized via an action of the quaternion group $Q_8$ on $S^3$; the second one via an action of the cyclic group of order four on $S^3$. We deduce a result of decomposition of $P$ of topological nature and then we find, in connection with the theory of pseudo-fermions, a possible physical interpretation of this decomposition.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/488685
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact