We show that locally compact abelian p-groups can be embedded in the first Hawaiian group on a compact path connected subspace of the Euclidean space of dimension four. This result gives a new geometric interpretation for the classification of locally compact abelian groups which are rich in commuting closed subgroups. It is then possible to introduce the idea of an algebraic topology for topologically modular locally compact groups via the geometry of the Hawaiian earring. Among other things, we find applications for locally compact groups which are just noncompact.

Embeddings of locally compact abelian p-groups in Hawaiian groups

Russo F
Primo
2022-01-01

Abstract

We show that locally compact abelian p-groups can be embedded in the first Hawaiian group on a compact path connected subspace of the Euclidean space of dimension four. This result gives a new geometric interpretation for the classification of locally compact abelian groups which are rich in commuting closed subgroups. It is then possible to introduce the idea of an algebraic topology for topologically modular locally compact groups via the geometry of the Hawaiian earring. Among other things, we find applications for locally compact groups which are just noncompact.
2022
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/488409
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact